langchain/libs/community/langchain_community/embeddings/oracleai.py
Harichandan Roy 1f751343e2
community[patch]: update embeddings/oracleai.py (#22240)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"

"community/embeddings: update oracleai.py"

- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!

Adding oracle VECTOR_ARRAY_T support.

- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

Tests are not impacted.

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Done.

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.


If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-06-03 12:38:51 -07:00

196 lines
5.5 KiB
Python

# Authors:
# Harichandan Roy (hroy)
# David Jiang (ddjiang)
#
# -----------------------------------------------------------------------------
# oracleai.py
# -----------------------------------------------------------------------------
from __future__ import annotations
import json
import logging
import traceback
from typing import TYPE_CHECKING, Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra
if TYPE_CHECKING:
from oracledb import Connection
logger = logging.getLogger(__name__)
"""OracleEmbeddings class"""
class OracleEmbeddings(BaseModel, Embeddings):
"""Get Embeddings"""
"""Oracle Connection"""
conn: Any
"""Embedding Parameters"""
params: Dict[str, Any]
"""Proxy"""
proxy: Optional[str] = None
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
"""
1 - user needs to have create procedure,
create mining model, create any directory privilege.
2 - grant create procedure, create mining model,
create any directory to <user>;
"""
@staticmethod
def load_onnx_model(
conn: Connection, dir: str, onnx_file: str, model_name: str
) -> None:
"""Load an ONNX model to Oracle Database.
Args:
conn: Oracle Connection,
dir: Oracle Directory,
onnx_file: ONNX file name,
model_name: Name of the model.
"""
try:
if conn is None or dir is None or onnx_file is None or model_name is None:
raise Exception("Invalid input")
cursor = conn.cursor()
cursor.execute(
"""
begin
dbms_data_mining.drop_model(model_name => :model, force => true);
SYS.DBMS_VECTOR.load_onnx_model(:path, :filename, :model,
json('{"function" : "embedding",
"embeddingOutput" : "embedding",
"input": {"input": ["DATA"]}}'));
end;""",
path=dir,
filename=onnx_file,
model=model_name,
)
cursor.close()
except Exception as ex:
logger.info(f"An exception occurred :: {ex}")
traceback.print_exc()
cursor.close()
raise
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using an OracleEmbeddings.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each input text.
"""
try:
import oracledb
except ImportError as e:
raise ImportError(
"Unable to import oracledb, please install with "
"`pip install -U oracledb`."
) from e
if texts is None:
return None
embeddings: List[List[float]] = []
try:
# returns strings or bytes instead of a locator
oracledb.defaults.fetch_lobs = False
cursor = self.conn.cursor()
if self.proxy:
cursor.execute(
"begin utl_http.set_proxy(:proxy); end;", proxy=self.proxy
)
chunks = []
for i, text in enumerate(texts, start=1):
chunk = {"chunk_id": i, "chunk_data": text}
chunks.append(json.dumps(chunk))
vector_array_type = self.conn.gettype("SYS.VECTOR_ARRAY_T")
inputs = vector_array_type.newobject(chunks)
cursor.execute(
"select t.* "
+ "from dbms_vector_chain.utl_to_embeddings(:content, "
+ "json(:params)) t",
content=inputs,
params=json.dumps(self.params),
)
for row in cursor:
if row is None:
embeddings.append([])
else:
rdata = json.loads(row[0])
# dereference string as array
vec = json.loads(rdata["embed_vector"])
embeddings.append(vec)
cursor.close()
return embeddings
except Exception as ex:
logger.info(f"An exception occurred :: {ex}")
traceback.print_exc()
cursor.close()
raise
def embed_query(self, text: str) -> List[float]:
"""Compute query embedding using an OracleEmbeddings.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
return self.embed_documents([text])[0]
# uncomment the following code block to run the test
"""
# A sample unit test.
import oracledb
# get the Oracle connection
conn = oracledb.connect(
user="<user>",
password="<password>",
dsn="<hostname>/<service_name>",
)
print("Oracle connection is established...")
# params
embedder_params = {"provider": "database", "model": "demo_model"}
proxy = ""
# instance
embedder = OracleEmbeddings(conn=conn, params=embedder_params, proxy=proxy)
docs = ["hello world!", "hi everyone!", "greetings!"]
embeds = embedder.embed_documents(docs)
print(f"Total Embeddings: {len(embeds)}")
print(f"Embedding generated by OracleEmbeddings: {embeds[0]}\n")
embed = embedder.embed_query("Hello World!")
print(f"Embedding generated by OracleEmbeddings: {embed}")
conn.close()
print("Connection is closed.")
"""