mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
1f751343e2
Thank you for contributing to LangChain! - [ ] **PR title**: "package: description" - Where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" "community/embeddings: update oracleai.py" - [ ] **PR message**: ***Delete this entire checklist*** and replace with - **Description:** a description of the change - **Issue:** the issue # it fixes, if applicable - **Dependencies:** any dependencies required for this change - **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out! Adding oracle VECTOR_ARRAY_T support. - [ ] **Add tests and docs**: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. Tests are not impacted. - [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ Done. Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
196 lines
5.5 KiB
Python
196 lines
5.5 KiB
Python
# Authors:
|
|
# Harichandan Roy (hroy)
|
|
# David Jiang (ddjiang)
|
|
#
|
|
# -----------------------------------------------------------------------------
|
|
# oracleai.py
|
|
# -----------------------------------------------------------------------------
|
|
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import logging
|
|
import traceback
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra
|
|
|
|
if TYPE_CHECKING:
|
|
from oracledb import Connection
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
"""OracleEmbeddings class"""
|
|
|
|
|
|
class OracleEmbeddings(BaseModel, Embeddings):
|
|
"""Get Embeddings"""
|
|
|
|
"""Oracle Connection"""
|
|
conn: Any
|
|
"""Embedding Parameters"""
|
|
params: Dict[str, Any]
|
|
"""Proxy"""
|
|
proxy: Optional[str] = None
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
super().__init__(**kwargs)
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
"""
|
|
1 - user needs to have create procedure,
|
|
create mining model, create any directory privilege.
|
|
2 - grant create procedure, create mining model,
|
|
create any directory to <user>;
|
|
"""
|
|
|
|
@staticmethod
|
|
def load_onnx_model(
|
|
conn: Connection, dir: str, onnx_file: str, model_name: str
|
|
) -> None:
|
|
"""Load an ONNX model to Oracle Database.
|
|
Args:
|
|
conn: Oracle Connection,
|
|
dir: Oracle Directory,
|
|
onnx_file: ONNX file name,
|
|
model_name: Name of the model.
|
|
"""
|
|
|
|
try:
|
|
if conn is None or dir is None or onnx_file is None or model_name is None:
|
|
raise Exception("Invalid input")
|
|
|
|
cursor = conn.cursor()
|
|
cursor.execute(
|
|
"""
|
|
begin
|
|
dbms_data_mining.drop_model(model_name => :model, force => true);
|
|
SYS.DBMS_VECTOR.load_onnx_model(:path, :filename, :model,
|
|
json('{"function" : "embedding",
|
|
"embeddingOutput" : "embedding",
|
|
"input": {"input": ["DATA"]}}'));
|
|
end;""",
|
|
path=dir,
|
|
filename=onnx_file,
|
|
model=model_name,
|
|
)
|
|
|
|
cursor.close()
|
|
|
|
except Exception as ex:
|
|
logger.info(f"An exception occurred :: {ex}")
|
|
traceback.print_exc()
|
|
cursor.close()
|
|
raise
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Compute doc embeddings using an OracleEmbeddings.
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
Returns:
|
|
List of embeddings, one for each input text.
|
|
"""
|
|
|
|
try:
|
|
import oracledb
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import oracledb, please install with "
|
|
"`pip install -U oracledb`."
|
|
) from e
|
|
|
|
if texts is None:
|
|
return None
|
|
|
|
embeddings: List[List[float]] = []
|
|
try:
|
|
# returns strings or bytes instead of a locator
|
|
oracledb.defaults.fetch_lobs = False
|
|
cursor = self.conn.cursor()
|
|
|
|
if self.proxy:
|
|
cursor.execute(
|
|
"begin utl_http.set_proxy(:proxy); end;", proxy=self.proxy
|
|
)
|
|
|
|
chunks = []
|
|
for i, text in enumerate(texts, start=1):
|
|
chunk = {"chunk_id": i, "chunk_data": text}
|
|
chunks.append(json.dumps(chunk))
|
|
|
|
vector_array_type = self.conn.gettype("SYS.VECTOR_ARRAY_T")
|
|
inputs = vector_array_type.newobject(chunks)
|
|
cursor.execute(
|
|
"select t.* "
|
|
+ "from dbms_vector_chain.utl_to_embeddings(:content, "
|
|
+ "json(:params)) t",
|
|
content=inputs,
|
|
params=json.dumps(self.params),
|
|
)
|
|
|
|
for row in cursor:
|
|
if row is None:
|
|
embeddings.append([])
|
|
else:
|
|
rdata = json.loads(row[0])
|
|
# dereference string as array
|
|
vec = json.loads(rdata["embed_vector"])
|
|
embeddings.append(vec)
|
|
|
|
cursor.close()
|
|
return embeddings
|
|
except Exception as ex:
|
|
logger.info(f"An exception occurred :: {ex}")
|
|
traceback.print_exc()
|
|
cursor.close()
|
|
raise
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Compute query embedding using an OracleEmbeddings.
|
|
Args:
|
|
text: The text to embed.
|
|
Returns:
|
|
Embedding for the text.
|
|
"""
|
|
return self.embed_documents([text])[0]
|
|
|
|
|
|
# uncomment the following code block to run the test
|
|
|
|
"""
|
|
# A sample unit test.
|
|
|
|
import oracledb
|
|
# get the Oracle connection
|
|
conn = oracledb.connect(
|
|
user="<user>",
|
|
password="<password>",
|
|
dsn="<hostname>/<service_name>",
|
|
)
|
|
print("Oracle connection is established...")
|
|
|
|
# params
|
|
embedder_params = {"provider": "database", "model": "demo_model"}
|
|
proxy = ""
|
|
|
|
# instance
|
|
embedder = OracleEmbeddings(conn=conn, params=embedder_params, proxy=proxy)
|
|
|
|
docs = ["hello world!", "hi everyone!", "greetings!"]
|
|
embeds = embedder.embed_documents(docs)
|
|
print(f"Total Embeddings: {len(embeds)}")
|
|
print(f"Embedding generated by OracleEmbeddings: {embeds[0]}\n")
|
|
|
|
embed = embedder.embed_query("Hello World!")
|
|
print(f"Embedding generated by OracleEmbeddings: {embed}")
|
|
|
|
conn.close()
|
|
print("Connection is closed.")
|
|
|
|
"""
|