langchain/libs/community/langchain_community/embeddings/jina.py
Joan Fontanals a7ae16f912
add embed_image API to JinaEmbedding (#22416)
- **Description:** Add `embed_image` to JinaEmbedding to embed images
 - **Twitter handle:** https://x.com/JinaAI_
2024-06-03 10:23:37 -04:00

106 lines
3.4 KiB
Python

import base64
from os.path import exists
from typing import Any, Dict, List, Optional
from urllib.parse import urlparse
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
JINA_API_URL: str = "https://api.jina.ai/v1/embeddings"
def is_local(url: str) -> bool:
url_parsed = urlparse(url)
if url_parsed.scheme in ("file", ""): # Possibly a local file
return exists(url_parsed.path)
return False
def get_bytes_str(file_path: str) -> str:
with open(file_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
class JinaEmbeddings(BaseModel, Embeddings):
"""Jina embedding models."""
session: Any #: :meta private:
model_name: str = "jina-embeddings-v2-base-en"
jina_api_key: Optional[SecretStr] = None
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that auth token exists in environment."""
try:
jina_api_key = convert_to_secret_str(
get_from_dict_or_env(values, "jina_api_key", "JINA_API_KEY")
)
except ValueError as original_exc:
try:
jina_api_key = convert_to_secret_str(
get_from_dict_or_env(values, "jina_auth_token", "JINA_AUTH_TOKEN")
)
except ValueError:
raise original_exc
session = requests.Session()
session.headers.update(
{
"Authorization": f"Bearer {jina_api_key.get_secret_value()}",
"Accept-Encoding": "identity",
"Content-type": "application/json",
}
)
values["session"] = session
return values
def _embed(self, input: Any) -> List[List[float]]:
# Call Jina AI Embedding API
resp = self.session.post( # type: ignore
JINA_API_URL, json={"input": input, "model": self.model_name}
).json()
if "data" not in resp:
raise RuntimeError(resp["detail"])
embeddings = resp["data"]
# Sort resulting embeddings by index
sorted_embeddings = sorted(embeddings, key=lambda e: e["index"]) # type: ignore
# Return just the embeddings
return [result["embedding"] for result in sorted_embeddings]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Jina's embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
return self._embed(texts)
def embed_query(self, text: str) -> List[float]:
"""Call out to Jina's embedding endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self._embed([text])[0]
def embed_images(self, uris: List[str]) -> List[List[float]]:
"""Call out to Jina's image embedding endpoint.
Args:
uris: The list of uris to embed.
Returns:
List of embeddings, one for each text.
"""
input = []
for uri in uris:
if is_local(uri):
input.append({"bytes": get_bytes_str(uri)})
else:
input.append({"url": uri})
return self._embed(input)