mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
63c3a0e56c
This PR makes some small updates for `KuzuQAChain` for graph QA. - Updated Cypher generation prompt (we now support `WHERE EXISTS`) and generalize it more - Support different LLMs for Cypher generation and QA - Update docs and examples
165 lines
5.4 KiB
Python
165 lines
5.4 KiB
Python
"""Question answering over a graph."""
|
|
from __future__ import annotations
|
|
|
|
import re
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain_core.callbacks import CallbackManagerForChainRun
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
from langchain_core.prompts import BasePromptTemplate
|
|
from langchain_core.pydantic_v1 import Field
|
|
|
|
from langchain_community.chains.graph_qa.prompts import (
|
|
CYPHER_QA_PROMPT,
|
|
KUZU_GENERATION_PROMPT,
|
|
)
|
|
from langchain_community.graphs.kuzu_graph import KuzuGraph
|
|
|
|
|
|
def remove_prefix(text: str, prefix: str) -> str:
|
|
"""Remove a prefix from a text.
|
|
|
|
Args:
|
|
text: Text to remove the prefix from.
|
|
prefix: Prefix to remove from the text.
|
|
|
|
Returns:
|
|
Text with the prefix removed.
|
|
"""
|
|
if text.startswith(prefix):
|
|
return text[len(prefix) :]
|
|
return text
|
|
|
|
|
|
def extract_cypher(text: str) -> str:
|
|
"""Extract Cypher code from a text.
|
|
|
|
Args:
|
|
text: Text to extract Cypher code from.
|
|
|
|
Returns:
|
|
Cypher code extracted from the text.
|
|
"""
|
|
# The pattern to find Cypher code enclosed in triple backticks
|
|
pattern = r"```(.*?)```"
|
|
|
|
# Find all matches in the input text
|
|
matches = re.findall(pattern, text, re.DOTALL)
|
|
|
|
return matches[0] if matches else text
|
|
|
|
|
|
class KuzuQAChain(Chain):
|
|
"""Question-answering against a graph by generating Cypher statements for Kùzu.
|
|
|
|
*Security note*: Make sure that the database connection uses credentials
|
|
that are narrowly-scoped to only include necessary permissions.
|
|
Failure to do so may result in data corruption or loss, since the calling
|
|
code may attempt commands that would result in deletion, mutation
|
|
of data if appropriately prompted or reading sensitive data if such
|
|
data is present in the database.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this tool.
|
|
|
|
See https://python.langchain.com/docs/security for more information.
|
|
"""
|
|
|
|
graph: KuzuGraph = Field(exclude=True)
|
|
cypher_generation_chain: LLMChain
|
|
qa_chain: LLMChain
|
|
input_key: str = "query" #: :meta private:
|
|
output_key: str = "result" #: :meta private:
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Return the input keys.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Return the output keys.
|
|
|
|
:meta private:
|
|
"""
|
|
_output_keys = [self.output_key]
|
|
return _output_keys
|
|
|
|
@classmethod
|
|
def from_llm(
|
|
cls,
|
|
llm: Optional[BaseLanguageModel] = None,
|
|
*,
|
|
qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT,
|
|
cypher_prompt: BasePromptTemplate = KUZU_GENERATION_PROMPT,
|
|
cypher_llm: Optional[BaseLanguageModel] = None,
|
|
qa_llm: Optional[BaseLanguageModel] = None,
|
|
**kwargs: Any,
|
|
) -> KuzuQAChain:
|
|
"""Initialize from LLM."""
|
|
if not cypher_llm and not llm:
|
|
raise ValueError("Either `llm` or `cypher_llm` parameters must be provided")
|
|
if not qa_llm and not llm:
|
|
raise ValueError(
|
|
"Either `llm` or `qa_llm` parameters must be provided along with"
|
|
" `cypher_llm`"
|
|
)
|
|
if cypher_llm and qa_llm and llm:
|
|
raise ValueError(
|
|
"You can specify up to two of 'cypher_llm', 'qa_llm'"
|
|
", and 'llm', but not all three simultaneously."
|
|
)
|
|
|
|
qa_chain = LLMChain(
|
|
llm=qa_llm or llm, # type: ignore[arg-type]
|
|
prompt=qa_prompt,
|
|
)
|
|
cypher_generation_chain = LLMChain(
|
|
llm=cypher_llm or llm, # type: ignore[arg-type]
|
|
prompt=cypher_prompt,
|
|
)
|
|
|
|
return cls(
|
|
qa_chain=qa_chain,
|
|
cypher_generation_chain=cypher_generation_chain,
|
|
**kwargs,
|
|
)
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, str]:
|
|
"""Generate Cypher statement, use it to look up in db and answer question."""
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
callbacks = _run_manager.get_child()
|
|
question = inputs[self.input_key]
|
|
|
|
generated_cypher = self.cypher_generation_chain.run(
|
|
{"question": question, "schema": self.graph.get_schema}, callbacks=callbacks
|
|
)
|
|
# Extract Cypher code if it is wrapped in triple backticks
|
|
# with the language marker "cypher"
|
|
generated_cypher = remove_prefix(extract_cypher(generated_cypher), "cypher")
|
|
|
|
_run_manager.on_text("Generated Cypher:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
generated_cypher, color="green", end="\n", verbose=self.verbose
|
|
)
|
|
context = self.graph.query(generated_cypher)
|
|
|
|
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
str(context), color="green", end="\n", verbose=self.verbose
|
|
)
|
|
|
|
result = self.qa_chain(
|
|
{"question": question, "context": context},
|
|
callbacks=callbacks,
|
|
)
|
|
return {self.output_key: result[self.qa_chain.output_key]}
|