mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
ed789be8f4
- chat models, messages - documents - agentaction/finish - baseretriever,document - stroutputparser - more messages - basemessage - format_document - baseoutputparser --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
221 lines
6.0 KiB
Plaintext
221 lines
6.0 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ba5f8741",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Custom multi-action agent\n",
|
|
"\n",
|
|
"This notebook goes through how to create your own custom agent.\n",
|
|
"\n",
|
|
"An agent consists of two parts:\n",
|
|
"\n",
|
|
"- Tools: The tools the agent has available to use.\n",
|
|
"- The agent class itself: this decides which action to take.\n",
|
|
" \n",
|
|
" \n",
|
|
"In this notebook we walk through how to create a custom agent that predicts/takes multiple steps at a time."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "9af9734e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.agents import AgentExecutor, BaseMultiActionAgent, Tool\n",
|
|
"from langchain_community.utilities import SerpAPIWrapper"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "d7c4ebdc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def random_word(query: str) -> str:\n",
|
|
" print(\"\\nNow I'm doing this!\")\n",
|
|
" return \"foo\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "becda2a1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"search = SerpAPIWrapper()\n",
|
|
"tools = [\n",
|
|
" Tool(\n",
|
|
" name=\"Search\",\n",
|
|
" func=search.run,\n",
|
|
" description=\"useful for when you need to answer questions about current events\",\n",
|
|
" ),\n",
|
|
" Tool(\n",
|
|
" name=\"RandomWord\",\n",
|
|
" func=random_word,\n",
|
|
" description=\"call this to get a random word.\",\n",
|
|
" ),\n",
|
|
"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "a33e2f7e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from typing import Any, List, Tuple, Union\n",
|
|
"\n",
|
|
"from langchain_core.agents import AgentAction, AgentFinish\n",
|
|
"\n",
|
|
"\n",
|
|
"class FakeAgent(BaseMultiActionAgent):\n",
|
|
" \"\"\"Fake Custom Agent.\"\"\"\n",
|
|
"\n",
|
|
" @property\n",
|
|
" def input_keys(self):\n",
|
|
" return [\"input\"]\n",
|
|
"\n",
|
|
" def plan(\n",
|
|
" self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
|
|
" ) -> Union[List[AgentAction], AgentFinish]:\n",
|
|
" \"\"\"Given input, decided what to do.\n",
|
|
"\n",
|
|
" Args:\n",
|
|
" intermediate_steps: Steps the LLM has taken to date,\n",
|
|
" along with observations\n",
|
|
" **kwargs: User inputs.\n",
|
|
"\n",
|
|
" Returns:\n",
|
|
" Action specifying what tool to use.\n",
|
|
" \"\"\"\n",
|
|
" if len(intermediate_steps) == 0:\n",
|
|
" return [\n",
|
|
" AgentAction(tool=\"Search\", tool_input=kwargs[\"input\"], log=\"\"),\n",
|
|
" AgentAction(tool=\"RandomWord\", tool_input=kwargs[\"input\"], log=\"\"),\n",
|
|
" ]\n",
|
|
" else:\n",
|
|
" return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")\n",
|
|
"\n",
|
|
" async def aplan(\n",
|
|
" self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
|
|
" ) -> Union[List[AgentAction], AgentFinish]:\n",
|
|
" \"\"\"Given input, decided what to do.\n",
|
|
"\n",
|
|
" Args:\n",
|
|
" intermediate_steps: Steps the LLM has taken to date,\n",
|
|
" along with observations\n",
|
|
" **kwargs: User inputs.\n",
|
|
"\n",
|
|
" Returns:\n",
|
|
" Action specifying what tool to use.\n",
|
|
" \"\"\"\n",
|
|
" if len(intermediate_steps) == 0:\n",
|
|
" return [\n",
|
|
" AgentAction(tool=\"Search\", tool_input=kwargs[\"input\"], log=\"\"),\n",
|
|
" AgentAction(tool=\"RandomWord\", tool_input=kwargs[\"input\"], log=\"\"),\n",
|
|
" ]\n",
|
|
" else:\n",
|
|
" return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "655d72f6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"agent = FakeAgent()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "490604e9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"agent_executor = AgentExecutor.from_agent_and_tools(\n",
|
|
" agent=agent, tools=tools, verbose=True\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "653b1617",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
|
"\u001b[32;1m\u001b[1;3m\u001b[0m\u001b[36;1m\u001b[1;3mThe current population of Canada is 38,669,152 as of Monday, April 24, 2023, based on Worldometer elaboration of the latest United Nations data.\u001b[0m\u001b[32;1m\u001b[1;3m\u001b[0m\n",
|
|
"Now I'm doing this!\n",
|
|
"\u001b[33;1m\u001b[1;3mfoo\u001b[0m\u001b[32;1m\u001b[1;3m\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'bar'"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"agent_executor.run(\"How many people live in canada as of 2023?\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "adefb4c2",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "18784188d7ecd866c0586ac068b02361a6896dc3a29b64f5cc957f09c590acef"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|