mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
146 lines
2.9 KiB
Plaintext
146 lines
2.9 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "34c90eed",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Microsoft Word\n",
|
|
"\n",
|
|
"This notebook shows how to load text from Microsoft word documents."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "28ded768",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.document_loaders import UnstructuredDocxLoader"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "f1f26035",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"loader = UnstructuredDocxLoader('example_data/fake.docx')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "2c87dde9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"data = loader.load()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "0e4a884c",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'example_data/fake.docx'}, lookup_index=0)]"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5d1472e9",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Retain Elements\n",
|
|
"\n",
|
|
"Under the hood, Unstructured creates different \"elements\" for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying `mode=\"elements\"`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "93abf60b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"loader = UnstructuredDocxLoader('example_data/fake.docx', mode=\"elements\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "c35cdbcc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"data = loader.load()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "fae2d730",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'example_data/fake.docx'}, lookup_index=0)]"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "961a7b1d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|