{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# NucliaDB\n", "\n", "You can use a local NucliaDB instance or use [Nuclia Cloud](https://nuclia.cloud).\n", "\n", "When using a local instance, you need a Nuclia Understanding API key, so your texts are properly vectorized and indexed. You can get a key by creating a free account at [https://nuclia.cloud](https://nuclia.cloud), and then [create a NUA key](https://docs.nuclia.dev/docs/docs/using/understanding/intro)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#!pip install langchain nuclia" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Usage with nuclia.cloud" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from langchain.vectorstores.nucliadb import NucliaDB\n", "API_KEY = \"YOUR_API_KEY\"\n", "\n", "ndb = NucliaDB(knowledge_box=\"YOUR_KB_ID\", local=False, api_key=API_KEY)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Usage with a local instance\n", "\n", "Note: By default `backend` is set to `http://localhost:8080`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from langchain.vectorstores.nucliadb import NucliaDB\n", "\n", "ndb = NucliaDB(knowledge_box=\"YOUR_KB_ID\", local=True, backend=\"http://my-local-server\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Add and delete texts to your Knowledge Box" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ids = ndb.add_texts([\"This is a new test\", \"This is a second test\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ndb.delete(ids=ids)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Search in your Knowledge Box" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "results = ndb.similarity_search(\"Who was inspired by Ada Lovelace?\")\n", "print(res.page_content)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 4 }