"""Test Chroma functionality.""" import pytest from langchain.docstore.document import Document from langchain.vectorstores import Chroma from tests.integration_tests.vectorstores.fake_embeddings import ( ConsistentFakeEmbeddings, FakeEmbeddings, ) def test_chroma() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings() ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] @pytest.mark.asyncio async def test_chroma_async() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings() ) output = await docsearch.asimilarity_search("foo", k=1) assert output == [Document(page_content="foo")] def test_chroma_with_metadatas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": "0"})] def test_chroma_with_metadatas_with_scores() -> None: """Test end to end construction and scored search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, ) output = docsearch.similarity_search_with_score("foo", k=1) assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)] def test_chroma_search_filter() -> None: """Test end to end construction and search with metadata filtering.""" texts = ["far", "bar", "baz"] metadatas = [{"first_letter": "{}".format(text[0])} for text in texts] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, ) output = docsearch.similarity_search("far", k=1, filter={"first_letter": "f"}) assert output == [Document(page_content="far", metadata={"first_letter": "f"})] output = docsearch.similarity_search("far", k=1, filter={"first_letter": "b"}) assert output == [Document(page_content="bar", metadata={"first_letter": "b"})] def test_chroma_search_filter_with_scores() -> None: """Test end to end construction and scored search with metadata filtering.""" texts = ["far", "bar", "baz"] metadatas = [{"first_letter": "{}".format(text[0])} for text in texts] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, ) output = docsearch.similarity_search_with_score( "far", k=1, filter={"first_letter": "f"} ) assert output == [ (Document(page_content="far", metadata={"first_letter": "f"}), 0.0) ] output = docsearch.similarity_search_with_score( "far", k=1, filter={"first_letter": "b"} ) assert output == [ (Document(page_content="bar", metadata={"first_letter": "b"}), 1.0) ] def test_chroma_with_persistence() -> None: """Test end to end construction and search, with persistence.""" chroma_persist_dir = "./tests/persist_dir" collection_name = "test_collection" texts = ["foo", "bar", "baz"] docsearch = Chroma.from_texts( collection_name=collection_name, texts=texts, embedding=FakeEmbeddings(), persist_directory=chroma_persist_dir, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] docsearch.persist() # Get a new VectorStore from the persisted directory docsearch = Chroma( collection_name=collection_name, embedding_function=FakeEmbeddings(), persist_directory=chroma_persist_dir, ) output = docsearch.similarity_search("foo", k=1) # Clean up docsearch.delete_collection() # Persist doesn't need to be called again # Data will be automatically persisted on object deletion # Or on program exit def test_chroma_mmr() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings() ) output = docsearch.max_marginal_relevance_search("foo", k=1) assert output == [Document(page_content="foo")] def test_chroma_mmr_by_vector() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] embeddings = FakeEmbeddings() docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=embeddings ) embedded_query = embeddings.embed_query("foo") output = docsearch.max_marginal_relevance_search_by_vector(embedded_query, k=1) assert output == [Document(page_content="foo")] def test_chroma_with_include_parameter() -> None: """Test end to end construction and include parameter.""" texts = ["foo", "bar", "baz"] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings() ) output = docsearch.get(include=["embeddings"]) assert output["embeddings"] is not None output = docsearch.get() assert output["embeddings"] is None def test_chroma_update_document() -> None: """Test the update_document function in the Chroma class.""" # Make a consistent embedding embedding = ConsistentFakeEmbeddings() # Initial document content and id initial_content = "foo" document_id = "doc1" # Create an instance of Document with initial content and metadata original_doc = Document(page_content=initial_content, metadata={"page": "0"}) # Initialize a Chroma instance with the original document docsearch = Chroma.from_documents( collection_name="test_collection", documents=[original_doc], embedding=embedding, ids=[document_id], ) old_embedding = docsearch._collection.peek()["embeddings"][ docsearch._collection.peek()["ids"].index(document_id) ] # Define updated content for the document updated_content = "updated foo" # Create a new Document instance with the updated content and the same id updated_doc = Document(page_content=updated_content, metadata={"page": "0"}) # Update the document in the Chroma instance docsearch.update_document(document_id=document_id, document=updated_doc) # Perform a similarity search with the updated content output = docsearch.similarity_search(updated_content, k=1) # Assert that the updated document is returned by the search assert output == [Document(page_content=updated_content, metadata={"page": "0"})] # Assert that the new embedding is correct new_embedding = docsearch._collection.peek()["embeddings"][ docsearch._collection.peek()["ids"].index(document_id) ] assert new_embedding == embedding.embed_documents([updated_content])[0] assert new_embedding != old_embedding