# Datadog Tracing >[ddtrace](https://github.com/DataDog/dd-trace-py) is a Datadog application performance monitoring (APM) library which provides an integration to monitor your LangChain application. Key features of the ddtrace integration for LangChain: - Traces: Capture LangChain requests, parameters, prompt-completions, and help visualize LangChain operations. - Metrics: Capture LangChain request latency, errors, and token/cost usage (for OpenAI LLMs and Chat Models). - Logs: Store prompt completion data for each LangChain operation. - Dashboard: Combine metrics, logs, and trace data into a single plane to monitor LangChain requests. - Monitors: Provide alerts in response to spikes in LangChain request latency or error rate. Note: The ddtrace LangChain integration currently provides tracing for LLMs, Chat Models, Text Embedding Models, Chains, and Vectorstores. ## Installation and Setup 1. Enable APM and StatsD in your Datadog Agent, along with a Datadog API key. For example, in Docker: ``` docker run -d --cgroupns host \ --pid host \ -v /var/run/docker.sock:/var/run/docker.sock:ro \ -v /proc/:/host/proc/:ro \ -v /sys/fs/cgroup/:/host/sys/fs/cgroup:ro \ -e DD_API_KEY= \ -p 127.0.0.1:8126:8126/tcp \ -p 127.0.0.1:8125:8125/udp \ -e DD_DOGSTATSD_NON_LOCAL_TRAFFIC=true \ -e DD_APM_ENABLED=true \ gcr.io/datadoghq/agent:latest ``` 2. Install the Datadog APM Python library. ``` pip install ddtrace>=1.17 ``` 3. The LangChain integration can be enabled automatically when you prefix your LangChain Python application command with `ddtrace-run`: ``` DD_SERVICE="my-service" DD_ENV="staging" DD_API_KEY= ddtrace-run python .py ``` **Note**: If the Agent is using a non-default hostname or port, be sure to also set `DD_AGENT_HOST`, `DD_TRACE_AGENT_PORT`, or `DD_DOGSTATSD_PORT`. Additionally, the LangChain integration can be enabled programmatically by adding `patch_all()` or `patch(langchain=True)` before the first import of `langchain` in your application. Note that using `ddtrace-run` or `patch_all()` will also enable the `requests` and `aiohttp` integrations which trace HTTP requests to LLM providers, as well as the `openai` integration which traces requests to the OpenAI library. ```python from ddtrace import config, patch # Note: be sure to configure the integration before calling ``patch()``! # eg. config.langchain["logs_enabled"] = True patch(langchain=True) # to trace synchronous HTTP requests # patch(langchain=True, requests=True) # to trace asynchronous HTTP requests (to the OpenAI library) # patch(langchain=True, aiohttp=True) # to include underlying OpenAI spans from the OpenAI integration # patch(langchain=True, openai=True)patch_all ``` See the [APM Python library documentation][https://ddtrace.readthedocs.io/en/stable/installation_quickstart.html] for more advanced usage. ## Configuration See the [APM Python library documentation][https://ddtrace.readthedocs.io/en/stable/integrations.html#langchain] for all the available configuration options. ### Log Prompt & Completion Sampling To enable log prompt and completion sampling, set the `DD_LANGCHAIN_LOGS_ENABLED=1` environment variable. By default, 10% of traced requests will emit logs containing the prompts and completions. To adjust the log sample rate, see the [APM library documentation][https://ddtrace.readthedocs.io/en/stable/integrations.html#langchain]. **Note**: Logs submission requires `DD_API_KEY` to be specified when running `ddtrace-run`. ## Troubleshooting Need help? Create an issue on [ddtrace](https://github.com/DataDog/dd-trace-py) or contact [Datadog support][https://docs.datadoghq.com/help/].