{ "cells": [ { "cell_type": "markdown", "id": "13afcae7", "metadata": {}, "source": [ "# Pinecone\n", "\n", ">[Pinecone](https://docs.pinecone.io/docs/overview) is a vector database with broad functionality.\n", "\n", "In the walkthrough, we'll demo the `SelfQueryRetriever` with a `Pinecone` vector store." ] }, { "cell_type": "markdown", "id": "68e75fb9", "metadata": {}, "source": [ "## Creating a Pinecone index\n", "First we'll want to create a `Pinecone` vector store and seed it with some data. We've created a small demo set of documents that contain summaries of movies.\n", "\n", "To use Pinecone, you have to have `pinecone` package installed and you must have an API key and an environment. Here are the [installation instructions](https://docs.pinecone.io/docs/quickstart).\n", "\n", "**Note:** The self-query retriever requires you to have `lark` package installed." ] }, { "cell_type": "code", "execution_count": 1, "id": "63a8af5b", "metadata": {}, "outputs": [], "source": [ "# !pip install lark" ] }, { "cell_type": "code", "execution_count": null, "id": "2f633445-57fe-45f3-84f7-80d3941b9e53", "metadata": {}, "outputs": [], "source": [ "#!pip install pinecone-client" ] }, { "cell_type": "code", "execution_count": 1, "id": "3eb9c9a4", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/pinecone/index.py:4: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n", " from tqdm.autonotebook import tqdm\n" ] } ], "source": [ "import os\n", "\n", "import pinecone\n", "\n", "\n", "pinecone.init(\n", " api_key=os.environ[\"PINECONE_API_KEY\"], environment=os.environ[\"PINECONE_ENV\"]\n", ")" ] }, { "cell_type": "code", "execution_count": 2, "id": "cb4a5787", "metadata": {}, "outputs": [], "source": [ "from langchain.schema import Document\n", "from langchain.embeddings.openai import OpenAIEmbeddings\n", "from langchain.vectorstores import Pinecone\n", "\n", "embeddings = OpenAIEmbeddings()\n", "# create new index\n", "pinecone.create_index(\"langchain-self-retriever-demo\", dimension=1536)" ] }, { "cell_type": "code", "execution_count": 3, "id": "bcbe04d9", "metadata": {}, "outputs": [], "source": [ "docs = [\n", " Document(\n", " page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\",\n", " metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": [\"action\", \"science fiction\"]},\n", " ),\n", " Document(\n", " page_content=\"Leo DiCaprio gets lost in a dream within a dream within a dream within a ...\",\n", " metadata={\"year\": 2010, \"director\": \"Christopher Nolan\", \"rating\": 8.2},\n", " ),\n", " Document(\n", " page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\",\n", " metadata={\"year\": 2006, \"director\": \"Satoshi Kon\", \"rating\": 8.6},\n", " ),\n", " Document(\n", " page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\",\n", " metadata={\"year\": 2019, \"director\": \"Greta Gerwig\", \"rating\": 8.3},\n", " ),\n", " Document(\n", " page_content=\"Toys come alive and have a blast doing so\",\n", " metadata={\"year\": 1995, \"genre\": \"animated\"},\n", " ),\n", " Document(\n", " page_content=\"Three men walk into the Zone, three men walk out of the Zone\",\n", " metadata={\n", " \"year\": 1979,\n", " \"rating\": 9.9,\n", " \"director\": \"Andrei Tarkovsky\",\n", " \"genre\": [\"science fiction\", \"thriller\"],\n", " \"rating\": 9.9,\n", " },\n", " ),\n", "]\n", "vectorstore = Pinecone.from_documents(\n", " docs, embeddings, index_name=\"langchain-self-retriever-demo\"\n", ")" ] }, { "cell_type": "markdown", "id": "5ecaab6d", "metadata": {}, "source": [ "## Creating our self-querying retriever\n", "Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents." ] }, { "cell_type": "code", "execution_count": 4, "id": "86e34dbf", "metadata": {}, "outputs": [], "source": [ "from langchain.llms import OpenAI\n", "from langchain.retrievers.self_query.base import SelfQueryRetriever\n", "from langchain.chains.query_constructor.base import AttributeInfo\n", "\n", "metadata_field_info = [\n", " AttributeInfo(\n", " name=\"genre\",\n", " description=\"The genre of the movie\",\n", " type=\"string or list[string]\",\n", " ),\n", " AttributeInfo(\n", " name=\"year\",\n", " description=\"The year the movie was released\",\n", " type=\"integer\",\n", " ),\n", " AttributeInfo(\n", " name=\"director\",\n", " description=\"The name of the movie director\",\n", " type=\"string\",\n", " ),\n", " AttributeInfo(\n", " name=\"rating\", description=\"A 1-10 rating for the movie\", type=\"float\"\n", " ),\n", "]\n", "document_content_description = \"Brief summary of a movie\"\n", "llm = OpenAI(temperature=0)\n", "retriever = SelfQueryRetriever.from_llm(\n", " llm, vectorstore, document_content_description, metadata_field_info, verbose=True\n", ")" ] }, { "cell_type": "markdown", "id": "ea9df8d4", "metadata": {}, "source": [ "## Testing it out\n", "And now we can try actually using our retriever!" ] }, { "cell_type": "code", "execution_count": 5, "id": "38a126e9", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "query='dinosaur' filter=None\n" ] }, { "data": { "text/plain": [ "[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'genre': ['action', 'science fiction'], 'rating': 7.7, 'year': 1993.0}),\n", " Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'year': 1995.0}),\n", " Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'director': 'Satoshi Kon', 'rating': 8.6, 'year': 2006.0}),\n", " Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'director': 'Christopher Nolan', 'rating': 8.2, 'year': 2010.0})]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# This example only specifies a relevant query\n", "retriever.get_relevant_documents(\"What are some movies about dinosaurs\")" ] }, { "cell_type": "code", "execution_count": 6, "id": "fc3f1e6e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "query=' ' filter=Comparison(comparator=, attribute='rating', value=8.5)\n" ] }, { "data": { "text/plain": [ "[Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'director': 'Satoshi Kon', 'rating': 8.6, 'year': 2006.0}),\n", " Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'director': 'Andrei Tarkovsky', 'genre': ['science fiction', 'thriller'], 'rating': 9.9, 'year': 1979.0})]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# This example only specifies a filter\n", "retriever.get_relevant_documents(\"I want to watch a movie rated higher than 8.5\")" ] }, { "cell_type": "code", "execution_count": 7, "id": "b19d4da0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "query='women' filter=Comparison(comparator=, attribute='director', value='Greta Gerwig')\n" ] }, { "data": { "text/plain": [ "[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'director': 'Greta Gerwig', 'rating': 8.3, 'year': 2019.0})]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# This example specifies a query and a filter\n", "retriever.get_relevant_documents(\"Has Greta Gerwig directed any movies about women\")" ] }, { "cell_type": "code", "execution_count": 8, "id": "f900e40e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "query=' ' filter=Operation(operator=, arguments=[Comparison(comparator=, attribute='genre', value='science fiction'), Comparison(comparator=, attribute='rating', value=8.5)])\n" ] }, { "data": { "text/plain": [ "[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'director': 'Andrei Tarkovsky', 'genre': ['science fiction', 'thriller'], 'rating': 9.9, 'year': 1979.0})]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# This example specifies a composite filter\n", "retriever.get_relevant_documents(\n", " \"What's a highly rated (above 8.5) science fiction film?\"\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "id": "12a51522", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "query='toys' filter=Operation(operator=, arguments=[Comparison(comparator=, attribute='year', value=1990.0), Comparison(comparator=, attribute='year', value=2005.0), Comparison(comparator=, attribute='genre', value='animated')])\n" ] }, { "data": { "text/plain": [ "[Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'year': 1995.0})]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# This example specifies a query and composite filter\n", "retriever.get_relevant_documents(\n", " \"What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated\"\n", ")" ] }, { "cell_type": "markdown", "id": "6fe7536c", "metadata": {}, "source": [ "## Filter k\n", "\n", "We can also use the self query retriever to specify `k`: the number of documents to fetch.\n", "\n", "We can do this by passing `enable_limit=True` to the constructor." ] }, { "cell_type": "code", "execution_count": null, "id": "3a2937c2", "metadata": {}, "outputs": [], "source": [ "retriever = SelfQueryRetriever.from_llm(\n", " llm,\n", " vectorstore,\n", " document_content_description,\n", " metadata_field_info,\n", " enable_limit=True,\n", " verbose=True,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "83d233aa", "metadata": {}, "outputs": [], "source": [ "# This example only specifies a relevant query\n", "retriever.get_relevant_documents(\"What are two movies about dinosaurs\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }