from __future__ import annotations import logging import os import traceback import uuid from concurrent.futures import ThreadPoolExecutor from typing import Any, Iterable, List, Optional, Tuple import requests from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.vectorstores import VectorStore logger = logging.getLogger(__name__) class Clarifai(VectorStore): """`Clarifai AI` vector store. To use, you should have the ``clarifai`` python SDK package installed. Example: .. code-block:: python from langchain_community.vectorstores import Clarifai clarifai_vector_db = Clarifai( user_id=USER_ID, app_id=APP_ID, number_of_docs=NUMBER_OF_DOCS, ) """ def __init__( self, user_id: Optional[str] = None, app_id: Optional[str] = None, number_of_docs: Optional[int] = None, pat: Optional[str] = None, ) -> None: """Initialize with Clarifai client. Args: user_id (Optional[str], optional): User ID. Defaults to None. app_id (Optional[str], optional): App ID. Defaults to None. pat (Optional[str], optional): Personal access token. Defaults to None. number_of_docs (Optional[int], optional): Number of documents to return during vector search. Defaults to None. api_base (Optional[str], optional): API base. Defaults to None. Raises: ValueError: If user ID, app ID or personal access token is not provided. """ self._user_id = user_id or os.environ.get("CLARIFAI_USER_ID") self._app_id = app_id or os.environ.get("CLARIFAI_APP_ID") if pat: os.environ["CLARIFAI_PAT"] = pat self._pat = os.environ.get("CLARIFAI_PAT") if self._user_id is None or self._app_id is None or self._pat is None: raise ValueError( "Could not find CLARIFAI_USER_ID, CLARIFAI_APP_ID or\ CLARIFAI_PAT in your environment. " "Please set those env variables with a valid user ID, \ app ID and personal access token \ from https://clarifai.com/settings/security." ) self._number_of_docs = number_of_docs def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Add texts to the Clarifai vectorstore. This will push the text to a Clarifai application. Application use a base workflow that create and store embedding for each text. Make sure you are using a base workflow that is compatible with text (such as Language Understanding). Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. """ try: from clarifai.client.input import Inputs from google.protobuf.struct_pb2 import Struct except ImportError as e: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) from e ltexts = list(texts) length = len(ltexts) assert length > 0, "No texts provided to add to the vectorstore." if metadatas is not None: assert length == len( metadatas ), "Number of texts and metadatas should be the same." if ids is not None: assert len(ltexts) == len( ids ), "Number of text inputs and input ids should be the same." input_obj = Inputs(app_id=self._app_id, user_id=self._user_id) batch_size = 32 input_job_ids = [] for idx in range(0, length, batch_size): try: batch_texts = ltexts[idx : idx + batch_size] batch_metadatas = ( metadatas[idx : idx + batch_size] if metadatas else None ) if ids is None: batch_ids = [uuid.uuid4().hex for _ in range(len(batch_texts))] else: batch_ids = ids[idx : idx + batch_size] if batch_metadatas is not None: meta_list = [] for meta in batch_metadatas: meta_struct = Struct() meta_struct.update(meta) meta_list.append(meta_struct) input_batch = [ input_obj.get_text_input( input_id=batch_ids[i], raw_text=text, metadata=meta_list[i] if batch_metadatas else None, ) for i, text in enumerate(batch_texts) ] result_id = input_obj.upload_inputs(inputs=input_batch) input_job_ids.extend(result_id) logger.debug("Input posted successfully.") except Exception as error: logger.warning(f"Post inputs failed: {error}") traceback.print_exc() return input_job_ids def similarity_search_with_score( self, query: str, k: int = 4, filters: Optional[dict] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search with score using Clarifai. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Document]: List of documents most similar to the query text. """ try: from clarifai.client.search import Search from clarifai_grpc.grpc.api import resources_pb2 from google.protobuf import json_format # type: ignore except ImportError as e: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) from e # Get number of docs to return if self._number_of_docs is not None: k = self._number_of_docs search_obj = Search(user_id=self._user_id, app_id=self._app_id, top_k=k) rank = [{"text_raw": query}] # Add filter by metadata if provided. if filters is not None: search_metadata = {"metadata": filters} search_response = search_obj.query(ranks=rank, filters=[search_metadata]) else: search_response = search_obj.query(ranks=rank) # Retrieve hits hits = [hit for data in search_response for hit in data.hits] executor = ThreadPoolExecutor(max_workers=10) def hit_to_document(hit: resources_pb2.Hit) -> Tuple[Document, float]: metadata = json_format.MessageToDict(hit.input.data.metadata) h = {"Authorization": f"Key {self._pat}"} request = requests.get(hit.input.data.text.url, headers=h) # override encoding by real educated guess as provided by chardet request.encoding = request.apparent_encoding requested_text = request.text logger.debug( f"\tScore {hit.score:.2f} for annotation: {hit.annotation.id}\ off input: {hit.input.id}, text: {requested_text[:125]}" ) return (Document(page_content=requested_text, metadata=metadata), hit.score) # Iterate over hits and retrieve metadata and text futures = [executor.submit(hit_to_document, hit) for hit in hits] docs_and_scores = [future.result() for future in futures] return docs_and_scores def similarity_search( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Document]: """Run similarity search using Clarifai. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query and score for each """ docs_and_scores = self.similarity_search_with_score(query, **kwargs) return [doc for doc, _ in docs_and_scores] @classmethod def from_texts( cls, texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, user_id: Optional[str] = None, app_id: Optional[str] = None, number_of_docs: Optional[int] = None, pat: Optional[str] = None, **kwargs: Any, ) -> Clarifai: """Create a Clarifai vectorstore from a list of texts. Args: user_id (str): User ID. app_id (str): App ID. texts (List[str]): List of texts to add. number_of_docs (Optional[int]): Number of documents to return during vector search. Defaults to None. metadatas (Optional[List[dict]]): Optional list of metadatas. Defaults to None. Returns: Clarifai: Clarifai vectorstore. """ clarifai_vector_db = cls( user_id=user_id, app_id=app_id, number_of_docs=number_of_docs, pat=pat, ) clarifai_vector_db.add_texts(texts=texts, metadatas=metadatas) return clarifai_vector_db @classmethod def from_documents( cls, documents: List[Document], embedding: Optional[Embeddings] = None, user_id: Optional[str] = None, app_id: Optional[str] = None, number_of_docs: Optional[int] = None, pat: Optional[str] = None, **kwargs: Any, ) -> Clarifai: """Create a Clarifai vectorstore from a list of documents. Args: user_id (str): User ID. app_id (str): App ID. documents (List[Document]): List of documents to add. number_of_docs (Optional[int]): Number of documents to return during vector search. Defaults to None. Returns: Clarifai: Clarifai vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( user_id=user_id, app_id=app_id, texts=texts, number_of_docs=number_of_docs, pat=pat, metadatas=metadatas, )