{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# PromptLayer\n", "\n", "![PromptLayer](https://promptlayer.com/text_logo.png)\n", "\n", "[PromptLayer](https://promptlayer.com) is a an LLM observability platform that lets you visualize requests, version prompts, and track usage. In this guide we will go over how to setup the `PromptLayerCallbackHandler`. \n", "\n", "While PromptLayer does have LLMs that integrate directly with LangChain (eg [`PromptLayerOpenAI`](https://python.langchain.com/docs/modules/model_io/models/llms/integrations/promptlayer_openai)), this callback is the recommended way to integrate PromptLayer with LangChain.\n", "\n", "See [our docs](https://docs.promptlayer.com/languages/langchain) for more information." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "## Installation and Setup" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install promptlayer --upgrade" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Getting API Credentials\n", "\n", "If you do not have a PromptLayer account, create one on [promptlayer.com](https://www.promptlayer.com). Then get an API key by clicking on the settings cog in the navbar and\n", "set it as an environment variabled called `PROMPTLAYER_API_KEY`\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Usage\n", "\n", "Getting started with `PromptLayerCallbackHandler` is fairly simple, it takes two optional arguments:\n", "1. `pl_tags` - an optional list of strings that will be tracked as tags on PromptLayer.\n", "2. `pl_id_callback` - an optional function that will take `promptlayer_request_id` as an argument. This ID can be used with all of PromptLayer's tracking features to track, metadata, scores, and prompt usage." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Simple OpenAI Example\n", "\n", "In this simple example we use `PromptLayerCallbackHandler` with `ChatOpenAI`. We add a PromptLayer tag named `chatopenai`" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import promptlayer # Don't forget this 🍰\n", "from langchain.callbacks import PromptLayerCallbackHandler\n", "from langchain.chat_models import ChatOpenAI\n", "from langchain.schema import (\n", " HumanMessage,\n", ")\n", "\n", "chat_llm = ChatOpenAI(\n", " temperature=0,\n", " callbacks=[PromptLayerCallbackHandler(pl_tags=[\"chatopenai\"])],\n", ")\n", "llm_results = chat_llm(\n", " [\n", " HumanMessage(content=\"What comes after 1,2,3 ?\"),\n", " HumanMessage(content=\"Tell me another joke?\"),\n", " ]\n", ")\n", "print(llm_results)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### GPT4All Example" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import promptlayer # Don't forget this 🍰\n", "from langchain.callbacks import PromptLayerCallbackHandler\n", "\n", "from langchain.llms import GPT4All\n", "\n", "model = GPT4All(model=\"./models/gpt4all-model.bin\", n_ctx=512, n_threads=8)\n", "\n", "response = model(\n", " \"Once upon a time, \",\n", " callbacks=[PromptLayerCallbackHandler(pl_tags=[\"langchain\", \"gpt4all\"])],\n", ")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Full Featured Example\n", "\n", "In this example we unlock more of the power of PromptLayer.\n", "\n", "PromptLayer allows you to visually create, version, and track prompt templates. Using the [Prompt Registry](https://docs.promptlayer.com/features/prompt-registry), we can programatically fetch the prompt template called `example`.\n", "\n", "We also define a `pl_id_callback` function which takes in the `promptlayer_request_id` and logs a score, metadata and links the prompt template used. Read more about tracking on [our docs](https://docs.promptlayer.com/features/prompt-history/request-id)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import promptlayer # Don't forget this 🍰\n", "from langchain.callbacks import PromptLayerCallbackHandler\n", "from langchain.llms import OpenAI\n", "\n", "\n", "def pl_id_callback(promptlayer_request_id):\n", " print(\"prompt layer id \", promptlayer_request_id)\n", " promptlayer.track.score(\n", " request_id=promptlayer_request_id, score=100\n", " ) # score is an integer 0-100\n", " promptlayer.track.metadata(\n", " request_id=promptlayer_request_id, metadata={\"foo\": \"bar\"}\n", " ) # metadata is a dictionary of key value pairs that is tracked on PromptLayer\n", " promptlayer.track.prompt(\n", " request_id=promptlayer_request_id,\n", " prompt_name=\"example\",\n", " prompt_input_variables={\"product\": \"toasters\"},\n", " version=1,\n", " ) # link the request to a prompt template\n", "\n", "\n", "openai_llm = OpenAI(\n", " model_name=\"text-davinci-002\",\n", " callbacks=[PromptLayerCallbackHandler(pl_id_callback=pl_id_callback)],\n", ")\n", "\n", "example_prompt = promptlayer.prompts.get(\"example\", version=1, langchain=True)\n", "openai_llm(example_prompt.format(product=\"toasters\"))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "That is all it takes! After setup all your requests will show up on the PromptLayer dashboard.\n", "This callback also works with any LLM implemented on LangChain." ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8 (default, Apr 13 2021, 12:59:45) \n[Clang 10.0.0 ]" }, "vscode": { "interpreter": { "hash": "c4fe2cd85a8d9e8baaec5340ce66faff1c77581a9f43e6c45e85e09b6fced008" } } }, "nbformat": 4, "nbformat_minor": 4 }