{ "cells": [ { "cell_type": "markdown", "id": "5b0a26fc", "metadata": {}, "source": [ "# Token counting\n", "LangChain offers a context manager that allows you to count tokens." ] }, { "cell_type": "code", "execution_count": 3, "id": "195fd686", "metadata": {}, "outputs": [], "source": [ "import asyncio\n", "\n", "from langchain.callbacks import get_openai_callback\n", "from langchain.llms import OpenAI\n", "\n", "llm = OpenAI(temperature=0)\n", "with get_openai_callback() as cb:\n", " llm(\"What is the square root of 4?\")\n", "\n", "total_tokens = cb.total_tokens\n", "assert total_tokens > 0\n", "\n", "with get_openai_callback() as cb:\n", " llm(\"What is the square root of 4?\")\n", " llm(\"What is the square root of 4?\")\n", "\n", "assert cb.total_tokens == total_tokens * 2\n", "\n", "# You can kick off concurrent runs from within the context manager\n", "with get_openai_callback() as cb:\n", " await asyncio.gather(\n", " *[llm.agenerate([\"What is the square root of 4?\"]) for _ in range(3)]\n", " )\n", "\n", "assert cb.total_tokens == total_tokens * 3\n", "\n", "# The context manager is concurrency safe\n", "task = asyncio.create_task(llm.agenerate([\"What is the square root of 4?\"]))\n", "with get_openai_callback() as cb:\n", " await llm.agenerate([\"What is the square root of 4?\"])\n", "\n", "await task\n", "assert cb.total_tokens == total_tokens" ] }, { "cell_type": "code", "execution_count": null, "id": "5e94e0d3", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "venv" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.3" } }, "nbformat": 4, "nbformat_minor": 5 }