{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"# Embedding Distance\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/extras/guides/evaluation/string/embedding_distance.ipynb)\n",
"\n",
"To measure semantic similarity (or dissimilarity) between a prediction and a reference label string, you could use a vector vector distance metric the two embedded representations using the `embedding_distance` evaluator.[[1]](#cite_note-1)\n",
"\n",
"\n",
"**Note:** This returns a **distance** score, meaning that the lower the number, the **more** similar the prediction is to the reference, according to their embedded representation.\n",
"\n",
"Check out the reference docs for the [EmbeddingDistanceEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.embedding_distance.base.EmbeddingDistanceEvalChain.html#langchain.evaluation.embedding_distance.base.EmbeddingDistanceEvalChain) for more info."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.evaluation import load_evaluator\n",
"\n",
"evaluator = load_evaluator(\"embedding_distance\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.0966466944859925}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_strings(prediction=\"I shall go\", reference=\"I shan't go\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.03761174337464557}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_strings(prediction=\"I shall go\", reference=\"I will go\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Select the Distance Metric\n",
"\n",
"By default, the evalutor uses cosine distance. You can choose a different distance metric if you'd like. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[,\n",
" ,\n",
" ,\n",
" ,\n",
" ]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.evaluation import EmbeddingDistance\n",
"\n",
"list(EmbeddingDistance)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# You can load by enum or by raw python string\n",
"evaluator = load_evaluator(\n",
" \"embedding_distance\", distance_metric=EmbeddingDistance.EUCLIDEAN\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Select Embeddings to Use\n",
"\n",
"The constructor uses `OpenAI` embeddings by default, but you can configure this however you want. Below, use huggingface local embeddings"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.embeddings import HuggingFaceEmbeddings\n",
"\n",
"embedding_model = HuggingFaceEmbeddings()\n",
"hf_evaluator = load_evaluator(\"embedding_distance\", embeddings=embedding_model)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.5486443280477362}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hf_evaluator.evaluate_strings(prediction=\"I shall go\", reference=\"I shan't go\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.21018880025138598}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hf_evaluator.evaluate_strings(prediction=\"I shall go\", reference=\"I will go\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Note: When it comes to semantic similarity, this often gives better results than older string distance metrics (such as those in the [StringDistanceEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.string_distance.base.StringDistanceEvalChain.html#langchain.evaluation.string_distance.base.StringDistanceEvalChain)), though it tends to be less reliable than evaluators that use the LLM directly (such as the [QAEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.qa.eval_chain.QAEvalChain.html#langchain.evaluation.qa.eval_chain.QAEvalChain) or [LabeledCriteriaEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.LabeledCriteriaEvalChain.html#langchain.evaluation.criteria.eval_chain.LabeledCriteriaEvalChain)) "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}