from langchain.prompts import ChatPromptTemplate from langchain.schema.output_parser import StrOutputParser from langchain.schema.runnable import RunnableBranch from .blurb_matcher import book_rec_chain from .chat import chat from .library_info import library_info from .rag import librarian_rag chain = ( ChatPromptTemplate.from_template( """Given the user message below, classify it as either being about `recommendation`, `library` or `other`. '{message}' Respond with just one word. For example, if the message is about a book recommendation,respond with `recommendation`. """ ) | chat | StrOutputParser() ) def extract_op_field(x): return x["output_text"] branch = RunnableBranch( ( lambda x: "recommendation" in x["topic"].lower(), book_rec_chain | extract_op_field, ), ( lambda x: "library" in x["topic"].lower(), {"message": lambda x: x["message"]} | library_info, ), librarian_rag, ) branched_chain = {"topic": chain, "message": lambda x: x["message"]} | branch