"""Test AzureML Endpoint wrapper.""" import json import os from pathlib import Path from typing import Dict from urllib.request import HTTPError import pytest from langchain_community.llms.azureml_endpoint import ( AzureMLOnlineEndpoint, ContentFormatterBase, DollyContentFormatter, HFContentFormatter, OSSContentFormatter, ) from langchain_community.llms.loading import load_llm def test_gpt2_call() -> None: """Test valid call to GPT2.""" llm = AzureMLOnlineEndpoint( endpoint_api_key=os.getenv("OSS_ENDPOINT_API_KEY"), endpoint_url=os.getenv("OSS_ENDPOINT_URL"), deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"), content_formatter=OSSContentFormatter(), ) output = llm("Foo") assert isinstance(output, str) def test_hf_call() -> None: """Test valid call to HuggingFace Foundation Model.""" llm = AzureMLOnlineEndpoint( endpoint_api_key=os.getenv("HF_ENDPOINT_API_KEY"), endpoint_url=os.getenv("HF_ENDPOINT_URL"), deployment_name=os.getenv("HF_DEPLOYMENT_NAME"), content_formatter=HFContentFormatter(), ) output = llm("Foo") assert isinstance(output, str) def test_dolly_call() -> None: """Test valid call to dolly-v2.""" llm = AzureMLOnlineEndpoint( endpoint_api_key=os.getenv("DOLLY_ENDPOINT_API_KEY"), endpoint_url=os.getenv("DOLLY_ENDPOINT_URL"), deployment_name=os.getenv("DOLLY_DEPLOYMENT_NAME"), content_formatter=DollyContentFormatter(), ) output = llm("Foo") assert isinstance(output, str) def test_custom_formatter() -> None: """Test ability to create a custom content formatter.""" class CustomFormatter(ContentFormatterBase): content_type = "application/json" accepts = "application/json" def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps( { "inputs": [prompt], "parameters": model_kwargs, "options": {"use_cache": False, "wait_for_model": True}, } ) return input_str.encode("utf-8") def format_response_payload(self, output: bytes) -> str: response_json = json.loads(output) return response_json[0]["summary_text"] llm = AzureMLOnlineEndpoint( endpoint_api_key=os.getenv("BART_ENDPOINT_API_KEY"), endpoint_url=os.getenv("BART_ENDPOINT_URL"), deployment_name=os.getenv("BART_DEPLOYMENT_NAME"), content_formatter=CustomFormatter(), ) output = llm("Foo") assert isinstance(output, str) def test_missing_content_formatter() -> None: """Test AzureML LLM without a content_formatter attribute""" with pytest.raises(AttributeError): llm = AzureMLOnlineEndpoint( endpoint_api_key=os.getenv("OSS_ENDPOINT_API_KEY"), endpoint_url=os.getenv("OSS_ENDPOINT_URL"), deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"), ) llm("Foo") def test_invalid_request_format() -> None: """Test invalid request format.""" class CustomContentFormatter(ContentFormatterBase): content_type = "application/json" accepts = "application/json" def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps( { "incorrect_input": {"input_string": [prompt]}, "parameters": model_kwargs, } ) return str.encode(input_str) def format_response_payload(self, output: bytes) -> str: response_json = json.loads(output) return response_json[0]["0"] with pytest.raises(HTTPError): llm = AzureMLOnlineEndpoint( endpoint_api_key=os.getenv("OSS_ENDPOINT_API_KEY"), endpoint_url=os.getenv("OSS_ENDPOINT_URL"), deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"), content_formatter=CustomContentFormatter(), ) llm("Foo") def test_incorrect_key() -> None: """Testing AzureML Endpoint for incorrect key""" with pytest.raises(HTTPError): llm = AzureMLOnlineEndpoint( endpoint_api_key="incorrect-key", endpoint_url=os.getenv("OSS_ENDPOINT_URL"), deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"), content_formatter=OSSContentFormatter(), ) llm("Foo") def test_saving_loading_llm(tmp_path: Path) -> None: """Test saving/loading an AzureML Foundation Model LLM.""" save_llm = AzureMLOnlineEndpoint( deployment_name="databricks-dolly-v2-12b-4", model_kwargs={"temperature": 0.03, "top_p": 0.4, "max_tokens": 200}, ) save_llm.save(file_path=tmp_path / "azureml.yaml") loaded_llm = load_llm(tmp_path / "azureml.yaml") assert loaded_llm == save_llm