"""Integration tests for the langchain tracer module.""" import asyncio from langchain_community.callbacks import get_openai_callback from langchain_community.llms import OpenAI async def test_openai_callback() -> None: llm = OpenAI(temperature=0) with get_openai_callback() as cb: llm("What is the square root of 4?") total_tokens = cb.total_tokens assert total_tokens > 0 with get_openai_callback() as cb: llm("What is the square root of 4?") llm("What is the square root of 4?") assert cb.total_tokens == total_tokens * 2 with get_openai_callback() as cb: await asyncio.gather( *[llm.agenerate(["What is the square root of 4?"]) for _ in range(3)] ) assert cb.total_tokens == total_tokens * 3 task = asyncio.create_task(llm.agenerate(["What is the square root of 4?"])) with get_openai_callback() as cb: await llm.agenerate(["What is the square root of 4?"]) await task assert cb.total_tokens == total_tokens def test_openai_callback_batch_llm() -> None: llm = OpenAI(temperature=0) with get_openai_callback() as cb: llm.generate(["What is the square root of 4?", "What is the square root of 4?"]) assert cb.total_tokens > 0 total_tokens = cb.total_tokens with get_openai_callback() as cb: llm("What is the square root of 4?") llm("What is the square root of 4?") assert cb.total_tokens == total_tokens def test_openai_callback_agent() -> None: from langchain.agents import AgentType, initialize_agent, load_tools llm = OpenAI(temperature=0) tools = load_tools(["serpapi", "llm-math"], llm=llm) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) with get_openai_callback() as cb: agent.run( "Who is Olivia Wilde's boyfriend? " "What is his current age raised to the 0.23 power?" ) print(f"Total Tokens: {cb.total_tokens}") print(f"Prompt Tokens: {cb.prompt_tokens}") print(f"Completion Tokens: {cb.completion_tokens}") print(f"Total Cost (USD): ${cb.total_cost}")