import base64 import hashlib import hmac import json import logging import time from typing import Any, Dict, Iterator, List, Mapping, Optional, Type from urllib.parse import urlparse import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.chat_models import ( BaseChatModel, generate_from_stream, ) from langchain_core.messages import ( AIMessage, AIMessageChunk, BaseMessage, BaseMessageChunk, ChatMessage, ChatMessageChunk, HumanMessage, HumanMessageChunk, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import ( convert_to_secret_str, get_from_dict_or_env, get_pydantic_field_names, ) logger = logging.getLogger(__name__) DEFAULT_API_BASE = "https://hunyuan.cloud.tencent.com" DEFAULT_PATH = "/hyllm/v1/chat/completions" def _convert_message_to_dict(message: BaseMessage) -> dict: message_dict: Dict[str, Any] if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} else: raise TypeError(f"Got unknown type {message}") return message_dict def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: role = _dict["role"] if role == "user": return HumanMessage(content=_dict["content"]) elif role == "assistant": return AIMessage(content=_dict.get("content", "") or "") else: return ChatMessage(content=_dict["content"], role=role) def _convert_delta_to_message_chunk( _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk] ) -> BaseMessageChunk: role = _dict.get("role") content = _dict.get("content") or "" if role == "user" or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == "assistant" or default_class == AIMessageChunk: return AIMessageChunk(content=content) elif role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) else: return default_class(content=content) # signature generation # https://cloud.tencent.com/document/product/1729/97732#532252ce-e960-48a7-8821-940a9ce2ccf3 def _signature(secret_key: SecretStr, url: str, payload: Dict[str, Any]) -> str: sorted_keys = sorted(payload.keys()) url_info = urlparse(url) sign_str = url_info.netloc + url_info.path + "?" for key in sorted_keys: value = payload[key] if isinstance(value, list) or isinstance(value, dict): value = json.dumps(value, separators=(",", ":")) elif isinstance(value, float): value = "%g" % value sign_str = sign_str + key + "=" + str(value) + "&" sign_str = sign_str[:-1] hmacstr = hmac.new( key=secret_key.get_secret_value().encode("utf-8"), msg=sign_str.encode("utf-8"), digestmod=hashlib.sha1, ).digest() return base64.b64encode(hmacstr).decode("utf-8") def _create_chat_result(response: Mapping[str, Any]) -> ChatResult: generations = [] for choice in response["choices"]: message = _convert_dict_to_message(choice["messages"]) generations.append(ChatGeneration(message=message)) token_usage = response["usage"] llm_output = {"token_usage": token_usage} return ChatResult(generations=generations, llm_output=llm_output) class ChatHunyuan(BaseChatModel): """Tencent Hunyuan chat models API by Tencent. For more information, see https://cloud.tencent.com/document/product/1729 """ @property def lc_secrets(self) -> Dict[str, str]: return { "hunyuan_app_id": "HUNYUAN_APP_ID", "hunyuan_secret_id": "HUNYUAN_SECRET_ID", "hunyuan_secret_key": "HUNYUAN_SECRET_KEY", } @property def lc_serializable(self) -> bool: return True hunyuan_api_base: str = Field(default=DEFAULT_API_BASE) """Hunyuan custom endpoints""" hunyuan_app_id: Optional[int] = None """Hunyuan App ID""" hunyuan_secret_id: Optional[str] = None """Hunyuan Secret ID""" hunyuan_secret_key: Optional[SecretStr] = None """Hunyuan Secret Key""" streaming: bool = False """Whether to stream the results or not.""" request_timeout: int = 60 """Timeout for requests to Hunyuan API. Default is 60 seconds.""" query_id: Optional[str] = None """Query id for troubleshooting""" temperature: float = 1.0 """What sampling temperature to use.""" top_p: float = 1.0 """What probability mass to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for API call not explicitly specified.""" class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: values["hunyuan_api_base"] = get_from_dict_or_env( values, "hunyuan_api_base", "HUNYUAN_API_BASE", DEFAULT_API_BASE, ) values["hunyuan_app_id"] = get_from_dict_or_env( values, "hunyuan_app_id", "HUNYUAN_APP_ID", ) values["hunyuan_secret_id"] = get_from_dict_or_env( values, "hunyuan_secret_id", "HUNYUAN_SECRET_ID", ) values["hunyuan_secret_key"] = convert_to_secret_str( get_from_dict_or_env( values, "hunyuan_secret_key", "HUNYUAN_SECRET_KEY", ) ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Hunyuan API.""" normal_params = { "app_id": self.hunyuan_app_id, "secret_id": self.hunyuan_secret_id, "temperature": self.temperature, "top_p": self.top_p, } if self.query_id is not None: normal_params["query_id"] = self.query_id return {**normal_params, **self.model_kwargs} def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._stream( messages=messages, stop=stop, run_manager=run_manager, **kwargs ) return generate_from_stream(stream_iter) res = self._chat(messages, **kwargs) response = res.json() if "error" in response: raise ValueError(f"Error from Hunyuan api response: {response}") return _create_chat_result(response) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: res = self._chat(messages, **kwargs) default_chunk_class = AIMessageChunk for chunk in res.iter_lines(): response = json.loads(chunk) if "error" in response: raise ValueError(f"Error from Hunyuan api response: {response}") for choice in response["choices"]: chunk = _convert_delta_to_message_chunk( choice["delta"], default_chunk_class ) default_chunk_class = chunk.__class__ cg_chunk = ChatGenerationChunk(message=chunk) if run_manager: run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk) yield cg_chunk def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response: if self.hunyuan_secret_key is None: raise ValueError("Hunyuan secret key is not set.") parameters = {**self._default_params, **kwargs} headers = parameters.pop("headers", {}) timestamp = parameters.pop("timestamp", int(time.time())) expired = parameters.pop("expired", timestamp + 24 * 60 * 60) payload = { "timestamp": timestamp, "expired": expired, "messages": [_convert_message_to_dict(m) for m in messages], **parameters, } if self.streaming: payload["stream"] = 1 url = self.hunyuan_api_base + DEFAULT_PATH res = requests.post( url=url, timeout=self.request_timeout, headers={ "Content-Type": "application/json", "Authorization": _signature( secret_key=self.hunyuan_secret_key, url=url, payload=payload ), **headers, }, json=payload, stream=self.streaming, ) return res @property def _llm_type(self) -> str: return "hunyuan-chat"