from __future__ import annotations import logging import os import warnings from typing import ( Any, Callable, Dict, List, Literal, Mapping, Optional, Sequence, Set, Tuple, Union, cast, ) import numpy as np from langchain_core.embeddings import Embeddings from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names from tenacity import ( AsyncRetrying, before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain_community.utils.openai import is_openai_v1 logger = logging.getLogger(__name__) def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]: import openai # Wait 2^x * 1 second between each retry starting with # retry_min_seconds seconds, then up to retry_max_seconds seconds, # then retry_max_seconds seconds afterwards # retry_min_seconds and retry_max_seconds are optional arguments of # OpenAIEmbeddings return retry( reraise=True, stop=stop_after_attempt(embeddings.max_retries), wait=wait_exponential( multiplier=1, min=embeddings.retry_min_seconds, max=embeddings.retry_max_seconds, ), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def _async_retry_decorator(embeddings: OpenAIEmbeddings) -> Any: import openai # Wait 2^x * 1 second between each retry starting with # retry_min_seconds seconds, then up to retry_max_seconds seconds, # then retry_max_seconds seconds afterwards # retry_min_seconds and retry_max_seconds are optional arguments of # OpenAIEmbeddings async_retrying = AsyncRetrying( reraise=True, stop=stop_after_attempt(embeddings.max_retries), wait=wait_exponential( multiplier=1, min=embeddings.retry_min_seconds, max=embeddings.retry_max_seconds, ), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def wrap(func: Callable) -> Callable: async def wrapped_f(*args: Any, **kwargs: Any) -> Callable: async for _ in async_retrying: return await func(*args, **kwargs) raise AssertionError("this is unreachable") return wrapped_f return wrap # https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings def _check_response(response: dict, skip_empty: bool = False) -> dict: if any(len(d["embedding"]) == 1 for d in response["data"]) and not skip_empty: import openai raise openai.error.APIError("OpenAI API returned an empty embedding") return response def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any: """Use tenacity to retry the embedding call.""" if is_openai_v1(): return embeddings.client.create(**kwargs) retry_decorator = _create_retry_decorator(embeddings) @retry_decorator def _embed_with_retry(**kwargs: Any) -> Any: response = embeddings.client.create(**kwargs) return _check_response(response, skip_empty=embeddings.skip_empty) return _embed_with_retry(**kwargs) async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any: """Use tenacity to retry the embedding call.""" if is_openai_v1(): return await embeddings.async_client.create(**kwargs) @_async_retry_decorator(embeddings) async def _async_embed_with_retry(**kwargs: Any) -> Any: response = await embeddings.client.acreate(**kwargs) return _check_response(response, skip_empty=embeddings.skip_empty) return await _async_embed_with_retry(**kwargs) class OpenAIEmbeddings(BaseModel, Embeddings): """OpenAI embedding models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain_community.embeddings import OpenAIEmbeddings openai = OpenAIEmbeddings(openai_api_key="my-api-key") In order to use the library with Microsoft Azure endpoints, you need to set the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION. The OPENAI_API_TYPE must be set to 'azure' and the others correspond to the properties of your endpoint. In addition, the deployment name must be passed as the model parameter. Example: .. code-block:: python import os os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_BASE"] = "https:// Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: warnings.warn( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_api_base"] = values["openai_api_base"] or os.getenv( "OPENAI_API_BASE" ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) if values["openai_api_type"] in ("azure", "azure_ad", "azuread"): default_api_version = "2023-05-15" # Azure OpenAI embedding models allow a maximum of 16 texts # at a time in each batch # See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings values["chunk_size"] = min(values["chunk_size"], 16) else: default_api_version = "" values["openai_api_version"] = get_from_dict_or_env( values, "openai_api_version", "OPENAI_API_VERSION", default=default_api_version, ) # Check OPENAI_ORGANIZATION for backwards compatibility. values["openai_organization"] = ( values["openai_organization"] or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") ) try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) else: if is_openai_v1(): if values["openai_api_type"] in ("azure", "azure_ad", "azuread"): warnings.warn( "If you have openai>=1.0.0 installed and are using Azure, " "please use the `AzureOpenAIEmbeddings` class." ) client_params = { "api_key": values["openai_api_key"], "organization": values["openai_organization"], "base_url": values["openai_api_base"], "timeout": values["request_timeout"], "max_retries": values["max_retries"], "default_headers": values["default_headers"], "default_query": values["default_query"], "http_client": values["http_client"], } if not values.get("client"): values["client"] = openai.OpenAI(**client_params).embeddings if not values.get("async_client"): values["async_client"] = openai.AsyncOpenAI( **client_params ).embeddings elif not values.get("client"): values["client"] = openai.Embedding else: pass return values @property def _invocation_params(self) -> Dict[str, Any]: if is_openai_v1(): openai_args: Dict = {"model": self.model, **self.model_kwargs} else: openai_args = { "model": self.model, "request_timeout": self.request_timeout, "headers": self.headers, "api_key": self.openai_api_key, "organization": self.openai_organization, "api_base": self.openai_api_base, "api_type": self.openai_api_type, "api_version": self.openai_api_version, **self.model_kwargs, } if self.openai_api_type in ("azure", "azure_ad", "azuread"): openai_args["engine"] = self.deployment # TODO: Look into proxy with openai v1. if self.openai_proxy: try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) openai.proxy = { "http": self.openai_proxy, "https": self.openai_proxy, } # type: ignore[assignment] # noqa: E501 return openai_args # please refer to # https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb def _get_len_safe_embeddings( self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None ) -> List[List[float]]: """ Generate length-safe embeddings for a list of texts. This method handles tokenization and embedding generation, respecting the set embedding context length and chunk size. It supports both tiktoken and HuggingFace tokenizer based on the tiktoken_enabled flag. Args: texts (List[str]): A list of texts to embed. engine (str): The engine or model to use for embeddings. chunk_size (Optional[int]): The size of chunks for processing embeddings. Returns: List[List[float]]: A list of embeddings for each input text. """ tokens = [] indices = [] model_name = self.tiktoken_model_name or self.model _chunk_size = chunk_size or self.chunk_size # If tiktoken flag set to False if not self.tiktoken_enabled: try: from transformers import AutoTokenizer except ImportError: raise ValueError( "Could not import transformers python package. " "This is needed in order to for OpenAIEmbeddings without " "`tiktoken`. Please install it with `pip install transformers`. " ) tokenizer = AutoTokenizer.from_pretrained( pretrained_model_name_or_path=model_name ) for i, text in enumerate(texts): # Tokenize the text using HuggingFace transformers tokenized = tokenizer.encode(text, add_special_tokens=False) # Split tokens into chunks respecting the embedding_ctx_length for j in range(0, len(tokenized), self.embedding_ctx_length): token_chunk = tokenized[j : j + self.embedding_ctx_length] # Convert token IDs back to a string chunk_text = tokenizer.decode(token_chunk) tokens.append(chunk_text) indices.append(i) else: try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to for OpenAIEmbeddings. " "Please install it with `pip install tiktoken`." ) try: encoding = tiktoken.encoding_for_model(model_name) except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken.get_encoding(model) for i, text in enumerate(texts): if self.model.endswith("001"): # See: https://github.com/openai/openai-python/ # issues/418#issuecomment-1525939500 # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") token = encoding.encode( text=text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, ) # Split tokens into chunks respecting the embedding_ctx_length for j in range(0, len(token), self.embedding_ctx_length): tokens.append(token[j : j + self.embedding_ctx_length]) indices.append(i) if self.show_progress_bar: try: from tqdm.auto import tqdm _iter = tqdm(range(0, len(tokens), _chunk_size)) except ImportError: _iter = range(0, len(tokens), _chunk_size) else: _iter = range(0, len(tokens), _chunk_size) batched_embeddings: List[List[float]] = [] for i in _iter: response = embed_with_retry( self, input=tokens[i : i + _chunk_size], **self._invocation_params, ) if not isinstance(response, dict): response = response.dict() batched_embeddings.extend(r["embedding"] for r in response["data"]) results: List[List[List[float]]] = [[] for _ in range(len(texts))] num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))] for i in range(len(indices)): if self.skip_empty and len(batched_embeddings[i]) == 1: continue results[indices[i]].append(batched_embeddings[i]) num_tokens_in_batch[indices[i]].append(len(tokens[i])) embeddings: List[List[float]] = [[] for _ in range(len(texts))] for i in range(len(texts)): _result = results[i] if len(_result) == 0: average_embedded = embed_with_retry( self, input="", **self._invocation_params, ) if not isinstance(average_embedded, dict): average_embedded = average_embedded.dict() average = average_embedded["data"][0]["embedding"] else: average = np.average(_result, axis=0, weights=num_tokens_in_batch[i]) embeddings[i] = (average / np.linalg.norm(average)).tolist() return embeddings # please refer to # https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb async def _aget_len_safe_embeddings( self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None ) -> List[List[float]]: """ Asynchronously generate length-safe embeddings for a list of texts. This method handles tokenization and asynchronous embedding generation, respecting the set embedding context length and chunk size. It supports both `tiktoken` and HuggingFace `tokenizer` based on the tiktoken_enabled flag. Args: texts (List[str]): A list of texts to embed. engine (str): The engine or model to use for embeddings. chunk_size (Optional[int]): The size of chunks for processing embeddings. Returns: List[List[float]]: A list of embeddings for each input text. """ tokens = [] indices = [] model_name = self.tiktoken_model_name or self.model _chunk_size = chunk_size or self.chunk_size # If tiktoken flag set to False if not self.tiktoken_enabled: try: from transformers import AutoTokenizer except ImportError: raise ValueError( "Could not import transformers python package. " "This is needed in order to for OpenAIEmbeddings without " " `tiktoken`. Please install it with `pip install transformers`." ) tokenizer = AutoTokenizer.from_pretrained( pretrained_model_name_or_path=model_name ) for i, text in enumerate(texts): # Tokenize the text using HuggingFace transformers tokenized = tokenizer.encode(text, add_special_tokens=False) # Split tokens into chunks respecting the embedding_ctx_length for j in range(0, len(tokenized), self.embedding_ctx_length): token_chunk = tokenized[j : j + self.embedding_ctx_length] # Convert token IDs back to a string chunk_text = tokenizer.decode(token_chunk) tokens.append(chunk_text) indices.append(i) else: try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to for OpenAIEmbeddings. " "Please install it with `pip install tiktoken`." ) try: encoding = tiktoken.encoding_for_model(model_name) except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken.get_encoding(model) for i, text in enumerate(texts): if self.model.endswith("001"): # See: https://github.com/openai/openai-python/ # issues/418#issuecomment-1525939500 # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") token = encoding.encode( text=text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, ) # Split tokens into chunks respecting the embedding_ctx_length for j in range(0, len(token), self.embedding_ctx_length): tokens.append(token[j : j + self.embedding_ctx_length]) indices.append(i) batched_embeddings: List[List[float]] = [] _chunk_size = chunk_size or self.chunk_size for i in range(0, len(tokens), _chunk_size): response = await async_embed_with_retry( self, input=tokens[i : i + _chunk_size], **self._invocation_params, ) if not isinstance(response, dict): response = response.dict() batched_embeddings.extend(r["embedding"] for r in response["data"]) results: List[List[List[float]]] = [[] for _ in range(len(texts))] num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))] for i in range(len(indices)): results[indices[i]].append(batched_embeddings[i]) num_tokens_in_batch[indices[i]].append(len(tokens[i])) embeddings: List[List[float]] = [[] for _ in range(len(texts))] for i in range(len(texts)): _result = results[i] if len(_result) == 0: average_embedded = await async_embed_with_retry( self, input="", **self._invocation_params, ) if not isinstance(average_embedded, dict): average_embedded = average_embedded.dict() average = average_embedded["data"][0]["embedding"] else: average = np.average(_result, axis=0, weights=num_tokens_in_batch[i]) embeddings[i] = (average / np.linalg.norm(average)).tolist() return embeddings def embed_documents( self, texts: List[str], chunk_size: Optional[int] = 0 ) -> List[List[float]]: """Call out to OpenAI's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. chunk_size: The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ # NOTE: to keep things simple, we assume the list may contain texts longer # than the maximum context and use length-safe embedding function. engine = cast(str, self.deployment) return self._get_len_safe_embeddings(texts, engine=engine) async def aembed_documents( self, texts: List[str], chunk_size: Optional[int] = 0 ) -> List[List[float]]: """Call out to OpenAI's embedding endpoint async for embedding search docs. Args: texts: The list of texts to embed. chunk_size: The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ # NOTE: to keep things simple, we assume the list may contain texts longer # than the maximum context and use length-safe embedding function. engine = cast(str, self.deployment) return await self._aget_len_safe_embeddings(texts, engine=engine) def embed_query(self, text: str) -> List[float]: """Call out to OpenAI's embedding endpoint for embedding query text. Args: text: The text to embed. Returns: Embedding for the text. """ return self.embed_documents([text])[0] async def aembed_query(self, text: str) -> List[float]: """Call out to OpenAI's embedding endpoint async for embedding query text. Args: text: The text to embed. Returns: Embedding for the text. """ embeddings = await self.aembed_documents([text]) return embeddings[0]