{ "cells": [ { "cell_type": "markdown", "id": "9597802c", "metadata": {}, "source": [ "# Self-Hosted Models via Runhouse\n", "This example goes over how to use LangChain and [Runhouse](https://github.com/run-house/runhouse) to interact with models hosted on your own GPU, or on-demand GPUs on AWS, GCP, AWS, or Lambda.\n", "\n", "For more information, see [Runhouse](https://github.com/run-house/runhouse) or the [Runhouse docs](https://runhouse-docs.readthedocs-hosted.com/en/latest/)." ] }, { "cell_type": "code", "execution_count": null, "id": "6fb585dd", "metadata": {}, "outputs": [], "source": [ "from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLM\n", "from langchain import PromptTemplate, LLMChain\n", "import runhouse as rh" ] }, { "cell_type": "code", "execution_count": null, "id": "06d6866e", "metadata": {}, "outputs": [], "source": [ "# For an on-demand A100 with GCP, Azure, or Lambda\n", "gpu = rh.cluster(name=\"rh-a10x\", instance_type=\"A100:1\", use_spot=False)\n", "\n", "# For an on-demand A10G with AWS (no single A100s on AWS)\n", "# gpu = rh.cluster(name='rh-a10x', instance_type='g5.2xlarge', provider='aws')\n", "\n", "# For an existing cluster\n", "# gpu = rh.cluster(ips=[''], \n", "# ssh_creds={'ssh_user': '...', 'ssh_private_key':''},\n", "# name='rh-a10x')" ] }, { "cell_type": "code", "execution_count": 4, "id": "035dea0f", "metadata": {}, "outputs": [], "source": [ "template = \"\"\"Question: {question}\n", "\n", "Answer: Let's think step by step.\"\"\"\n", "\n", "prompt = PromptTemplate(template=template, input_variables=[\"question\"])" ] }, { "cell_type": "code", "execution_count": null, "id": "3f3458d9", "metadata": {}, "outputs": [], "source": [ "llm = SelfHostedHuggingFaceLLM(model_id=\"gpt2\", hardware=gpu, model_reqs=[\"pip:./\", \"transformers\", \"torch\"])" ] }, { "cell_type": "code", "execution_count": 6, "id": "a641dbd9", "metadata": {}, "outputs": [], "source": [ "llm_chain = LLMChain(prompt=prompt, llm=llm)" ] }, { "cell_type": "code", "execution_count": 31, "id": "6fb6fdb2", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO | 2023-02-17 05:42:23,537 | Running _generate_text via gRPC\n", "INFO | 2023-02-17 05:42:24,016 | Time to send message: 0.48 seconds\n" ] }, { "data": { "text/plain": [ "\"\\n\\nLet's say we're talking sports teams who won the Super Bowl in the year Justin Beiber\"" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n", "\n", "llm_chain.run(question)" ] }, { "cell_type": "markdown", "id": "c88709cd", "metadata": {}, "source": [ "You can also load more custom models through the SelfHostedHuggingFaceLLM interface:" ] }, { "cell_type": "code", "execution_count": null, "id": "22820c5a", "metadata": { "scrolled": true }, "outputs": [], "source": [ "llm = SelfHostedHuggingFaceLLM(\n", " model_id=\"google/flan-t5-small\",\n", " task=\"text2text-generation\",\n", " hardware=gpu,\n", ")" ] }, { "cell_type": "code", "execution_count": 39, "id": "1528e70f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO | 2023-02-17 05:54:21,681 | Running _generate_text via gRPC\n", "INFO | 2023-02-17 05:54:21,937 | Time to send message: 0.25 seconds\n" ] }, { "data": { "text/plain": [ "'berlin'" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "llm(\"What is the capital of Germany?\")" ] }, { "cell_type": "markdown", "id": "7a0c3746", "metadata": {}, "source": [ "Using a custom load function, we can load a custom pipeline directly on the remote hardware:" ] }, { "cell_type": "code", "execution_count": 34, "id": "893eb1d3", "metadata": {}, "outputs": [], "source": [ "def load_pipeline():\n", " from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Need to be inside the fn in notebooks\n", " model_id = \"gpt2\"\n", " tokenizer = AutoTokenizer.from_pretrained(model_id)\n", " model = AutoModelForCausalLM.from_pretrained(model_id)\n", " pipe = pipeline(\n", " \"text-generation\", model=model, tokenizer=tokenizer, max_new_tokens=10\n", " )\n", " return pipe\n", "\n", "def inference_fn(pipeline, prompt, stop = None):\n", " return pipeline(prompt)[0][\"generated_text\"][len(prompt):]" ] }, { "cell_type": "code", "execution_count": null, "id": "087d50dc", "metadata": { "scrolled": true }, "outputs": [], "source": [ "llm = SelfHostedHuggingFaceLLM(model_load_fn=load_pipeline, hardware=gpu, inference_fn=inference_fn)" ] }, { "cell_type": "code", "execution_count": 36, "id": "feb8da8e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO | 2023-02-17 05:42:59,219 | Running _generate_text via gRPC\n", "INFO | 2023-02-17 05:42:59,522 | Time to send message: 0.3 seconds\n" ] }, { "data": { "text/plain": [ "'john w. bush'" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "llm(\"Who is the current US president?\")" ] }, { "cell_type": "markdown", "id": "af08575f", "metadata": {}, "source": [ "You can send your pipeline directly over the wire to your model, but this will only work for small models (<2 Gb), and will be pretty slow:" ] }, { "cell_type": "code", "execution_count": null, "id": "d23023b9", "metadata": {}, "outputs": [], "source": [ "pipeline = load_pipeline()\n", "llm = SelfHostedPipeline.from_pipeline(\n", " pipeline=pipeline, hardware=gpu, model_reqs=model_reqs\n", ")" ] }, { "cell_type": "markdown", "id": "fcb447a1", "metadata": {}, "source": [ "Instead, we can also send it to the hardware's filesystem, which will be much faster." ] }, { "cell_type": "code", "execution_count": null, "id": "7206b7d6", "metadata": {}, "outputs": [], "source": [ "rh.blob(pickle.dumps(pipeline), path=\"models/pipeline.pkl\").save().to(gpu, path=\"models\")\n", "\n", "llm = SelfHostedPipeline.from_pipeline(pipeline=\"models/pipeline.pkl\", hardware=gpu)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" } }, "nbformat": 4, "nbformat_minor": 5 }