{ "cells": [ { "cell_type": "markdown", "id": "14f8b67b", "metadata": {}, "source": [ "# AutoGPT\n", "\n", "Implementation of https://github.com/Significant-Gravitas/Auto-GPT but with LangChain primitives (LLMs, PromptTemplates, VectorStores, Embeddings, Tools)" ] }, { "cell_type": "markdown", "id": "192496a7", "metadata": {}, "source": [ "## Set up tools\n", "\n", "We'll set up an AutoGPT with a search tool, and write-file tool, and a read-file tool" ] }, { "cell_type": "code", "execution_count": 2, "id": "7c2c9b54", "metadata": {}, "outputs": [], "source": [ "from langchain.utilities import SerpAPIWrapper\n", "from langchain.agents import Tool\n", "from langchain.tools.file_management.write import WriteFileTool\n", "from langchain.tools.file_management.read import ReadFileTool\n", "\n", "search = SerpAPIWrapper()\n", "tools = [\n", " Tool(\n", " name=\"search\",\n", " func=search.run,\n", " description=\"useful for when you need to answer questions about current events. You should ask targeted questions\",\n", " ),\n", " WriteFileTool(),\n", " ReadFileTool(),\n", "]" ] }, { "cell_type": "markdown", "id": "8e39ee28", "metadata": {}, "source": [ "## Set up memory\n", "\n", "The memory here is used for the agents intermediate steps" ] }, { "cell_type": "code", "execution_count": 3, "id": "72bc204d", "metadata": {}, "outputs": [], "source": [ "from langchain.vectorstores import FAISS\n", "from langchain.docstore import InMemoryDocstore\n", "from langchain.embeddings import OpenAIEmbeddings" ] }, { "cell_type": "code", "execution_count": 4, "id": "1df7b724", "metadata": {}, "outputs": [], "source": [ "# Define your embedding model\n", "embeddings_model = OpenAIEmbeddings()\n", "# Initialize the vectorstore as empty\n", "import faiss\n", "\n", "embedding_size = 1536\n", "index = faiss.IndexFlatL2(embedding_size)\n", "vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})" ] }, { "cell_type": "markdown", "id": "e40fd657", "metadata": {}, "source": [ "## Setup model and AutoGPT\n", "\n", "Initialize everything! We will use ChatOpenAI model" ] }, { "cell_type": "code", "execution_count": 5, "id": "3393bc23", "metadata": {}, "outputs": [], "source": [ "from langchain.experimental import AutoGPT\n", "from langchain.chat_models import ChatOpenAI" ] }, { "cell_type": "code", "execution_count": 6, "id": "709c08c2", "metadata": {}, "outputs": [], "source": [ "agent = AutoGPT.from_llm_and_tools(\n", " ai_name=\"Tom\",\n", " ai_role=\"Assistant\",\n", " tools=tools,\n", " llm=ChatOpenAI(temperature=0),\n", " memory=vectorstore.as_retriever(),\n", ")\n", "# Set verbose to be true\n", "agent.chain.verbose = True" ] }, { "cell_type": "markdown", "source": [ "## Run an example\n", "\n", "Here we will make it write a weather report for SF" ], "metadata": { "collapsed": false }, "id": "f0f208d9" }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "agent.run([\"write a weather report for SF today\"])" ], "metadata": { "collapsed": false }, "id": "d119d788" }, { "cell_type": "markdown", "source": [ "## Chat History Memory\n", "\n", "In addition to the memory that holds the agent immediate steps, we also have a chat history memory. By default, the agent will use 'ChatMessageHistory' and it can be changed. This is useful when you want to use a different type of memory for example 'FileChatHistoryMemory'" ], "metadata": { "collapsed": false }, "id": "f13f8322" }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "from langchain.memory.chat_message_histories import FileChatMessageHistory\n", "\n", "agent = AutoGPT.from_llm_and_tools(\n", " ai_name=\"Tom\",\n", " ai_role=\"Assistant\",\n", " tools=tools,\n", " llm=ChatOpenAI(temperature=0),\n", " memory=vectorstore.as_retriever(),\n", " chat_history_memory=FileChatMessageHistory(\"chat_history.txt\"),\n", ")" ], "metadata": { "collapsed": false }, "id": "2a81f5ad" }, { "cell_type": "markdown", "source": [], "metadata": { "collapsed": false }, "id": "b1403008" } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }