{ "cells": [ { "cell_type": "markdown", "id": "ed47bb62", "metadata": {}, "source": [ "# Hugging Face Hub\n", "Let's load the Hugging Face Embedding class." ] }, { "cell_type": "code", "execution_count": 7, "id": "861521a9", "metadata": {}, "outputs": [], "source": [ "from langchain.embeddings import HuggingFaceEmbeddings" ] }, { "cell_type": "code", "execution_count": 16, "id": "ff9be586", "metadata": {}, "outputs": [], "source": [ "embeddings = HuggingFaceEmbeddings()" ] }, { "cell_type": "code", "execution_count": 12, "id": "d0a98ae9", "metadata": {}, "outputs": [], "source": [ "text = \"This is a test document.\"" ] }, { "cell_type": "code", "execution_count": 13, "id": "5d6c682b", "metadata": {}, "outputs": [], "source": [ "query_result = embeddings.embed_query(text)" ] }, { "cell_type": "code", "execution_count": 14, "id": "bb5e74c0", "metadata": {}, "outputs": [], "source": [ "doc_result = embeddings.embed_documents([text])" ] }, { "cell_type": "code", "execution_count": null, "id": "aaad49f8", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" }, "vscode": { "interpreter": { "hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885" } } }, "nbformat": 4, "nbformat_minor": 5 }