"""Test ChatOpenAI wrapper.""" import pytest from langchain.callbacks.manager import CallbackManager from langchain.chat_models.openai import ChatOpenAI from langchain.schema import ( BaseMessage, ChatGeneration, ChatResult, HumanMessage, LLMResult, SystemMessage, ) from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler def test_chat_openai() -> None: """Test ChatOpenAI wrapper.""" chat = ChatOpenAI(max_tokens=10) message = HumanMessage(content="Hello") response = chat([message]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_chat_openai_system_message() -> None: """Test ChatOpenAI wrapper with system message.""" chat = ChatOpenAI(max_tokens=10) system_message = SystemMessage(content="You are to chat with the user.") human_message = HumanMessage(content="Hello") response = chat([system_message, human_message]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_chat_openai_generate() -> None: """Test ChatOpenAI wrapper with generate.""" chat = ChatOpenAI(max_tokens=10, n=2) message = HumanMessage(content="Hello") response = chat.generate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 2 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content def test_chat_openai_multiple_completions() -> None: """Test ChatOpenAI wrapper with multiple completions.""" chat = ChatOpenAI(max_tokens=10, n=5) message = HumanMessage(content="Hello") response = chat._generate([message]) assert isinstance(response, ChatResult) assert len(response.generations) == 5 for generation in response.generations: assert isinstance(generation.message, BaseMessage) assert isinstance(generation.message.content, str) def test_chat_openai_streaming() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) chat = ChatOpenAI( max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True, ) message = HumanMessage(content="Hello") response = chat([message]) assert callback_handler.llm_streams > 0 assert isinstance(response, BaseMessage) def test_chat_openai_llm_output_contains_model_name() -> None: """Test llm_output contains model_name.""" chat = ChatOpenAI(max_tokens=10) message = HumanMessage(content="Hello") llm_result = chat.generate([[message]]) assert llm_result.llm_output is not None assert llm_result.llm_output["model_name"] == chat.model_name def test_chat_openai_streaming_llm_output_contains_model_name() -> None: """Test llm_output contains model_name.""" chat = ChatOpenAI(max_tokens=10, streaming=True) message = HumanMessage(content="Hello") llm_result = chat.generate([[message]]) assert llm_result.llm_output is not None assert llm_result.llm_output["model_name"] == chat.model_name def test_chat_openai_invalid_streaming_params() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" with pytest.raises(ValueError): ChatOpenAI( max_tokens=10, streaming=True, temperature=0, n=5, ) @pytest.mark.asyncio async def test_async_chat_openai() -> None: """Test async generation.""" chat = ChatOpenAI(max_tokens=10, n=2) message = HumanMessage(content="Hello") response = await chat.agenerate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 2 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content @pytest.mark.asyncio async def test_async_chat_openai_streaming() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) chat = ChatOpenAI( max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True, ) message = HumanMessage(content="Hello") response = await chat.agenerate([[message], [message]]) assert callback_handler.llm_streams > 0 assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 1 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content def test_chat_openai_extra_kwargs() -> None: """Test extra kwargs to chat openai.""" # Check that foo is saved in extra_kwargs. llm = ChatOpenAI(foo=3, max_tokens=10) assert llm.max_tokens == 10 assert llm.model_kwargs == {"foo": 3} # Test that if extra_kwargs are provided, they are added to it. llm = ChatOpenAI(foo=3, model_kwargs={"bar": 2}) assert llm.model_kwargs == {"foo": 3, "bar": 2} # Test that if provided twice it errors with pytest.raises(ValueError): ChatOpenAI(foo=3, model_kwargs={"foo": 2}) # Test that if explicit param is specified in kwargs it errors with pytest.raises(ValueError): ChatOpenAI(model_kwargs={"temperature": 0.2}) # Test that "model" cannot be specified in kwargs with pytest.raises(ValueError): ChatOpenAI(model_kwargs={"model": "text-davinci-003"})