import logging from typing import Any, List, Mapping, Optional from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.pydantic_v1 import Extra DEFAULT_MODEL_ID = "gpt2" logger = logging.getLogger(__name__) class IpexLLM(LLM): """Wrapper around the IpexLLM model Example: .. code-block:: python from langchain_community.llms import IpexLLM llm = IpexLLM.from_model_id(model_id="THUDM/chatglm-6b") """ model_id: str = DEFAULT_MODEL_ID """Model name or model path to use.""" model_kwargs: Optional[dict] = None """Keyword arguments passed to the model.""" model: Any #: :meta private: """IpexLLM model.""" tokenizer: Any #: :meta private: """Huggingface tokenizer model.""" streaming: bool = True """Whether to stream the results, token by token.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @classmethod def from_model_id( cls, model_id: str, model_kwargs: Optional[dict] = None, **kwargs: Any, ) -> LLM: """ Construct object from model_id Args: model_id: Path for the huggingface repo id to be downloaded or the huggingface checkpoint folder. model_kwargs: Keyword arguments to pass to the model and tokenizer. kwargs: Extra arguments to pass to the model and tokenizer. Returns: An object of IpexLLM. """ try: from ipex_llm.transformers import ( AutoModel, AutoModelForCausalLM, ) from transformers import AutoTokenizer, LlamaTokenizer except ImportError: raise ValueError( "Could not import ipex-llm or transformers. " "Please install it with `pip install --pre --upgrade ipex-llm[all]`." ) _model_kwargs = model_kwargs or {} try: tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs) except Exception: tokenizer = LlamaTokenizer.from_pretrained(model_id, **_model_kwargs) try: model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=True, **_model_kwargs ) except Exception: model = AutoModel.from_pretrained( model_id, load_in_4bit=True, **_model_kwargs ) if "trust_remote_code" in _model_kwargs: _model_kwargs = { k: v for k, v in _model_kwargs.items() if k != "trust_remote_code" } return cls( model_id=model_id, model=model, tokenizer=tokenizer, model_kwargs=_model_kwargs, **kwargs, ) @classmethod def from_model_id_low_bit( cls, model_id: str, model_kwargs: Optional[dict] = None, **kwargs: Any, ) -> LLM: """ Construct low_bit object from model_id Args: model_id: Path for the ipex-llm transformers low-bit model folder. model_kwargs: Keyword arguments to pass to the model and tokenizer. kwargs: Extra arguments to pass to the model and tokenizer. Returns: An object of IpexLLM. """ try: from ipex_llm.transformers import ( AutoModel, AutoModelForCausalLM, ) from transformers import AutoTokenizer, LlamaTokenizer except ImportError: raise ValueError( "Could not import ipex-llm or transformers. " "Please install it with `pip install --pre --upgrade ipex-llm[all]`." ) _model_kwargs = model_kwargs or {} try: tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs) except Exception: tokenizer = LlamaTokenizer.from_pretrained(model_id, **_model_kwargs) try: model = AutoModelForCausalLM.load_low_bit(model_id, **_model_kwargs) except Exception: model = AutoModel.load_low_bit(model_id, **_model_kwargs) if "trust_remote_code" in _model_kwargs: _model_kwargs = { k: v for k, v in _model_kwargs.items() if k != "trust_remote_code" } return cls( model_id=model_id, model=model, tokenizer=tokenizer, model_kwargs=_model_kwargs, **kwargs, ) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_id": self.model_id, "model_kwargs": self.model_kwargs, } @property def _llm_type(self) -> str: return "ipex-llm" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: if self.streaming: from transformers import TextStreamer input_ids = self.tokenizer.encode(prompt, return_tensors="pt") streamer = TextStreamer( self.tokenizer, skip_prompt=True, skip_special_tokens=True ) if stop is not None: from transformers.generation.stopping_criteria import ( StoppingCriteriaList, ) from transformers.tools.agents import StopSequenceCriteria # stop generation when stop words are encountered # TODO: stop generation when the following one is stop word stopping_criteria = StoppingCriteriaList( [StopSequenceCriteria(stop, self.tokenizer)] ) else: stopping_criteria = None output = self.model.generate( input_ids, streamer=streamer, stopping_criteria=stopping_criteria, **kwargs, ) text = self.tokenizer.decode(output[0], skip_special_tokens=True) return text else: input_ids = self.tokenizer.encode(prompt, return_tensors="pt") if stop is not None: from transformers.generation.stopping_criteria import ( StoppingCriteriaList, ) from transformers.tools.agents import StopSequenceCriteria stopping_criteria = StoppingCriteriaList( [StopSequenceCriteria(stop, self.tokenizer)] ) else: stopping_criteria = None output = self.model.generate( input_ids, stopping_criteria=stopping_criteria, **kwargs ) text = self.tokenizer.decode(output[0], skip_special_tokens=True)[ len(prompt) : ] return text