# C Transformers This page covers how to use the [C Transformers](https://github.com/marella/ctransformers) library within LangChain. It is broken into two parts: installation and setup, and then references to specific C Transformers wrappers. ## Installation and Setup - Install the Python package with `pip install ctransformers` - Download a supported [GGML model](https://huggingface.co/TheBloke) (see [Supported Models](https://github.com/marella/ctransformers#supported-models)) ## Wrappers ### LLM There exists a CTransformers LLM wrapper, which you can access with: ```python from langchain.llms import CTransformers ``` It provides a unified interface for all models: ```python llm = CTransformers(model='/path/to/ggml-gpt-2.bin', model_type='gpt2') print(llm('AI is going to')) ``` If you are getting `illegal instruction` error, try using `lib='avx'` or `lib='basic'`: ```py llm = CTransformers(model='/path/to/ggml-gpt-2.bin', model_type='gpt2', lib='avx') ``` It can be used with models hosted on the Hugging Face Hub: ```py llm = CTransformers(model='marella/gpt-2-ggml') ``` If a model repo has multiple model files (`.bin` files), specify a model file using: ```py llm = CTransformers(model='marella/gpt-2-ggml', model_file='ggml-model.bin') ``` Additional parameters can be passed using the `config` parameter: ```py config = {'max_new_tokens': 256, 'repetition_penalty': 1.1} llm = CTransformers(model='marella/gpt-2-ggml', config=config) ``` See [Documentation](https://github.com/marella/ctransformers#config) for a list of available parameters. For a more detailed walkthrough of this, see [this notebook](/docs/modules/model_io/models/llms/integrations/ctransformers.html).