import json from pathlib import Path from langchain.schema import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import Chroma from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough # Load output from gpt crawler path_to_gptcrawler = Path(__file__).parent.parent / "output.json" data = json.loads(Path(path_to_gptcrawler).read_text()) docs = [ Document( page_content=dict_["html"], metadata={"title": dict_["title"], "url": dict_["url"]}, ) for dict_ in data ] # Split text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) all_splits = text_splitter.split_documents(docs) # Add to vectorDB vectorstore = Chroma.from_documents( documents=all_splits, collection_name="rag-gpt-builder", embedding=OpenAIEmbeddings(), ) retriever = vectorstore.as_retriever() # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # LLM model = ChatOpenAI() # RAG chain chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)