{ "cells": [ { "cell_type": "markdown", "id": "655b8f55-2089-4733-8b09-35dea9580695", "metadata": {}, "source": [ "# Google Vertex AI MatchingEngine\n", "\n", "This notebook shows how to use functionality related to the `GCP Vertex AI MatchingEngine` vector database.\n", "\n", "> Vertex AI [Matching Engine](https://cloud.google.com/vertex-ai/docs/matching-engine/overview) provides the industry's leading high-scale low latency vector database. These vector databases are commonly referred to as vector similarity-matching or an approximate nearest neighbor (ANN) service.\n", "\n", "**Note**: This module expects an endpoint and deployed index already created as the creation time takes close to one hour. To see how to create an index refer to the section [Create Index and deploy it to an Endpoint](#create-index-and-deploy-it-to-an-endpoint)" ] }, { "cell_type": "markdown", "id": "a9971578-0ae9-4809-9e80-e5f9d3dcc98a", "metadata": {}, "source": [ "## Create VectorStore from texts" ] }, { "cell_type": "code", "execution_count": null, "id": "f7c96da4-8d97-4f69-8c13-d2fcafc03b05", "metadata": {}, "outputs": [], "source": [ "from langchain.vectorstores import MatchingEngine" ] }, { "cell_type": "code", "execution_count": null, "id": "58b70880-edd9-46f3-b769-f26c2bcc8395", "metadata": {}, "outputs": [], "source": [ "texts = [\n", " \"The cat sat on\",\n", " \"the mat.\",\n", " \"I like to\",\n", " \"eat pizza for\",\n", " \"dinner.\",\n", " \"The sun sets\",\n", " \"in the west.\",\n", "]\n", "\n", "\n", "vector_store = MatchingEngine.from_components(\n", " texts=texts,\n", " project_id=\"\",\n", " region=\"\",\n", " gcs_bucket_uri=\"\",\n", " index_id=\"\",\n", " endpoint_id=\"\",\n", ")\n", "\n", "vector_store.add_texts(texts=texts)\n", "\n", "vector_store.similarity_search(\"lunch\", k=2)" ] }, { "cell_type": "markdown", "id": "0e76e05c-d4ef-49a1-b1b9-2ea989a0eda3", "metadata": { "tags": [] }, "source": [ "## Create Index and deploy it to an Endpoint" ] }, { "cell_type": "markdown", "id": "61935a91-5efb-48af-bb40-ea1e83e24974", "metadata": {}, "source": [ "### Imports, Constants and Configs" ] }, { "cell_type": "code", "execution_count": null, "id": "421b66c9-5b8f-4ef7-821e-12886a62b672", "metadata": {}, "outputs": [], "source": [ "# Installing dependencies.\n", "!pip install tensorflow \\\n", " google-cloud-aiplatform \\\n", " tensorflow-hub \\\n", " tensorflow-text " ] }, { "cell_type": "code", "execution_count": null, "id": "e4e9cc02-371e-40a1-bce9-37ac8efdf2cb", "metadata": {}, "outputs": [], "source": [ "import os\n", "import json\n", "\n", "from google.cloud import aiplatform\n", "import tensorflow_hub as hub\n", "import tensorflow_text" ] }, { "cell_type": "code", "execution_count": null, "id": "352a05df-6532-4aba-a36f-603327a5bc5b", "metadata": { "tags": [] }, "outputs": [], "source": [ "PROJECT_ID = \"\"\n", "REGION = \"\"\n", "VPC_NETWORK = \"\"\n", "PEERING_RANGE_NAME = \"ann-langchain-me-range\" # Name for creating the VPC peering.\n", "BUCKET_URI = \"gs://\"\n", "# The number of dimensions for the tensorflow universal sentence encoder.\n", "# If other embedder is used, the dimensions would probably need to change.\n", "DIMENSIONS = 512\n", "DISPLAY_NAME = \"index-test-name\"\n", "EMBEDDING_DIR = f\"{BUCKET_URI}/banana\"\n", "DEPLOYED_INDEX_ID = \"endpoint-test-name\"\n", "\n", "PROJECT_NUMBER = !gcloud projects list --filter=\"PROJECT_ID:'{PROJECT_ID}'\" --format='value(PROJECT_NUMBER)'\n", "PROJECT_NUMBER = PROJECT_NUMBER[0]\n", "VPC_NETWORK_FULL = f\"projects/{PROJECT_NUMBER}/global/networks/{VPC_NETWORK}\"\n", "\n", "# Change this if you need the VPC to be created.\n", "CREATE_VPC = False" ] }, { "cell_type": "code", "execution_count": null, "id": "076e7931-f83e-4597-8748-c8004fd8de96", "metadata": {}, "outputs": [], "source": [ "# Set the project id\n", "! gcloud config set project {PROJECT_ID}" ] }, { "cell_type": "code", "execution_count": null, "id": "4265081b-a5b7-491e-8ac5-1e26975b9974", "metadata": {}, "outputs": [], "source": [ "# Remove the if condition to run the encapsulated code\n", "if CREATE_VPC:\n", " # Create a VPC network\n", " ! gcloud compute networks create {VPC_NETWORK} --bgp-routing-mode=regional --subnet-mode=auto --project={PROJECT_ID}\n", "\n", " # Add necessary firewall rules\n", " ! gcloud compute firewall-rules create {VPC_NETWORK}-allow-icmp --network {VPC_NETWORK} --priority 65534 --project {PROJECT_ID} --allow icmp\n", "\n", " ! gcloud compute firewall-rules create {VPC_NETWORK}-allow-internal --network {VPC_NETWORK} --priority 65534 --project {PROJECT_ID} --allow all --source-ranges 10.128.0.0/9\n", "\n", " ! gcloud compute firewall-rules create {VPC_NETWORK}-allow-rdp --network {VPC_NETWORK} --priority 65534 --project {PROJECT_ID} --allow tcp:3389\n", "\n", " ! gcloud compute firewall-rules create {VPC_NETWORK}-allow-ssh --network {VPC_NETWORK} --priority 65534 --project {PROJECT_ID} --allow tcp:22\n", "\n", " # Reserve IP range\n", " ! gcloud compute addresses create {PEERING_RANGE_NAME} --global --prefix-length=16 --network={VPC_NETWORK} --purpose=VPC_PEERING --project={PROJECT_ID} --description=\"peering range\"\n", "\n", " # Set up peering with service networking\n", " # Your account must have the \"Compute Network Admin\" role to run the following.\n", " ! gcloud services vpc-peerings connect --service=servicenetworking.googleapis.com --network={VPC_NETWORK} --ranges={PEERING_RANGE_NAME} --project={PROJECT_ID}" ] }, { "cell_type": "code", "execution_count": null, "id": "9dfbb847-fc53-48c1-b0f2-00d1c4330b01", "metadata": {}, "outputs": [], "source": [ "# Creating bucket.\n", "! gsutil mb -l $REGION -p $PROJECT_ID $BUCKET_URI" ] }, { "cell_type": "markdown", "id": "f9698068-3d2f-471b-90c3-dae3e4ca6f63", "metadata": {}, "source": [ "### Using Tensorflow Universal Sentence Encoder as an Embedder" ] }, { "cell_type": "code", "execution_count": null, "id": "144007e2-ddf8-43cd-ac45-848be0458ba9", "metadata": {}, "outputs": [], "source": [ "# Load the Universal Sentence Encoder module\n", "module_url = \"https://tfhub.dev/google/universal-sentence-encoder-multilingual/3\"\n", "model = hub.load(module_url)" ] }, { "cell_type": "code", "execution_count": null, "id": "94a2bdcb-c7e3-4fb0-8c97-cc1f2263f06c", "metadata": {}, "outputs": [], "source": [ "# Generate embeddings for each word\n", "embeddings = model([\"banana\"])" ] }, { "cell_type": "markdown", "id": "5a4e6e99-5e42-4e55-90f6-c03aae4fbf14", "metadata": {}, "source": [ "### Inserting a test embedding" ] }, { "cell_type": "code", "execution_count": null, "id": "024c78f3-4663-4d8f-9f3c-b7d82073ada4", "metadata": {}, "outputs": [], "source": [ "initial_config = {\n", " \"id\": \"banana_id\",\n", " \"embedding\": [float(x) for x in list(embeddings.numpy()[0])],\n", "}\n", "\n", "with open(\"data.json\", \"w\") as f:\n", " json.dump(initial_config, f)\n", "\n", "!gsutil cp data.json {EMBEDDING_DIR}/file.json" ] }, { "cell_type": "code", "execution_count": null, "id": "a11489f4-5904-4fc2-9178-f32c2df0406d", "metadata": {}, "outputs": [], "source": [ "aiplatform.init(project=PROJECT_ID, location=REGION, staging_bucket=BUCKET_URI)" ] }, { "cell_type": "markdown", "id": "e3c6953b-11f6-4803-bf2d-36fa42abf3c7", "metadata": {}, "source": [ "### Creating Index" ] }, { "cell_type": "code", "execution_count": null, "id": "c31c3c56-bfe0-49ec-9901-cd146f592da7", "metadata": {}, "outputs": [], "source": [ "my_index = aiplatform.MatchingEngineIndex.create_tree_ah_index(\n", " display_name=DISPLAY_NAME,\n", " contents_delta_uri=EMBEDDING_DIR,\n", " dimensions=DIMENSIONS,\n", " approximate_neighbors_count=150,\n", " distance_measure_type=\"DOT_PRODUCT_DISTANCE\",\n", ")" ] }, { "cell_type": "markdown", "id": "50770669-edf6-4796-9563-d1ea59cfa8e8", "metadata": {}, "source": [ "### Creating Endpoint" ] }, { "cell_type": "code", "execution_count": null, "id": "20c93d1b-a7d5-47b0-9c95-1aec1c62e281", "metadata": {}, "outputs": [], "source": [ "my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint.create(\n", " display_name=f\"{DISPLAY_NAME}-endpoint\",\n", " network=VPC_NETWORK_FULL,\n", ")" ] }, { "cell_type": "markdown", "id": "b52df797-28db-4b4a-b79c-e8a274293a6a", "metadata": {}, "source": [ "### Deploy Index" ] }, { "cell_type": "code", "execution_count": null, "id": "019a7043-ad11-4a48-bec7-18928547b2ba", "metadata": {}, "outputs": [], "source": [ "my_index_endpoint = my_index_endpoint.deploy_index(\n", " index=my_index, deployed_index_id=DEPLOYED_INDEX_ID\n", ")\n", "\n", "my_index_endpoint.deployed_indexes" ] } ], "metadata": { "environment": { "kernel": "python3", "name": "common-cpu.m107", "type": "gcloud", "uri": "gcr.io/deeplearning-platform-release/base-cpu:m107" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }