{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Spacy Embedding\n", "\n", "### Loading the Spacy embedding class to generate and query embeddings" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "#### Import the necessary classes" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from langchain.embeddings.spacy_embeddings import SpacyEmbeddings" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "#### Initialize SpacyEmbeddings.This will load the Spacy model into memory." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "embedder = SpacyEmbeddings()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "#### Define some example texts . These could be any documents that you want to analyze - for example, news articles, social media posts, or product reviews." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "texts = [\n", " \"The quick brown fox jumps over the lazy dog.\",\n", " \"Pack my box with five dozen liquor jugs.\",\n", " \"How vexingly quick daft zebras jump!\",\n", " \"Bright vixens jump; dozy fowl quack.\",\n", "]" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "#### Generate and print embeddings for the texts . The SpacyEmbeddings class generates an embedding for each document, which is a numerical representation of the document's content. These embeddings can be used for various natural language processing tasks, such as document similarity comparison or text classification." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "embeddings = embedder.embed_documents(texts)\n", "for i, embedding in enumerate(embeddings):\n", " print(f\"Embedding for document {i+1}: {embedding}\")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "#### Generate and print an embedding for a single piece of text. You can also generate an embedding for a single piece of text, such as a search query. This can be useful for tasks like information retrieval, where you want to find documents that are similar to a given query." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "query = \"Quick foxes and lazy dogs.\"\n", "query_embedding = embedder.embed_query(query)\n", "print(f\"Embedding for query: {query_embedding}\")" ] } ], "metadata": { "language_info": { "name": "python" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }