{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "ed47bb62", "metadata": {}, "source": [ "# Sentence Transformers Embeddings\n", "\n", "[SentenceTransformers](https://www.sbert.net/) embeddings are called using the `HuggingFaceEmbeddings` integration. We have also added an alias for `SentenceTransformerEmbeddings` for users who are more familiar with directly using that package.\n", "\n", "SentenceTransformers is a python package that can generate text and image embeddings, originating from [Sentence-BERT](https://arxiv.org/abs/1908.10084)" ] }, { "cell_type": "code", "execution_count": 1, "id": "06c9f47d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n" ] } ], "source": [ "!pip install sentence_transformers > /dev/null" ] }, { "cell_type": "code", "execution_count": 2, "id": "861521a9", "metadata": {}, "outputs": [], "source": [ "from langchain.embeddings import HuggingFaceEmbeddings, SentenceTransformerEmbeddings" ] }, { "cell_type": "code", "execution_count": null, "id": "ff9be586", "metadata": {}, "outputs": [], "source": [ "embeddings = HuggingFaceEmbeddings(model_name=\"all-MiniLM-L6-v2\")\n", "# Equivalent to SentenceTransformerEmbeddings(model_name=\"all-MiniLM-L6-v2\")" ] }, { "cell_type": "code", "execution_count": 4, "id": "d0a98ae9", "metadata": {}, "outputs": [], "source": [ "text = \"This is a test document.\"" ] }, { "cell_type": "code", "execution_count": 5, "id": "5d6c682b", "metadata": {}, "outputs": [], "source": [ "query_result = embeddings.embed_query(text)" ] }, { "cell_type": "code", "execution_count": 6, "id": "bb5e74c0", "metadata": {}, "outputs": [], "source": [ "doc_result = embeddings.embed_documents([text, \"This is not a test document.\"])" ] }, { "cell_type": "code", "execution_count": null, "id": "aaad49f8", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.16" }, "vscode": { "interpreter": { "hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885" } } }, "nbformat": 4, "nbformat_minor": 5 }