{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# ModelScope\n", "\n", "Let's load the ModelScope Embedding class." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from langchain.embeddings import ModelScopeEmbeddings" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model_id = \"damo/nlp_corom_sentence-embedding_english-base\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "embeddings = ModelScopeEmbeddings(model_id=model_id)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "text = \"This is a test document.\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "query_result = embeddings.embed_query(text)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "doc_results = embeddings.embed_documents([\"foo\"])" ] } ], "metadata": { "kernelspec": { "display_name": "chatgpt", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.9.15" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }