{ "cells": [ { "cell_type": "markdown", "id": "59428e05", "metadata": {}, "source": [ "# InstructEmbeddings\n", "Let's load the HuggingFace instruct Embeddings class." ] }, { "cell_type": "code", "execution_count": 8, "id": "92c5b61e", "metadata": {}, "outputs": [], "source": [ "from langchain.embeddings import HuggingFaceInstructEmbeddings" ] }, { "cell_type": "code", "execution_count": 9, "id": "062547b9", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "load INSTRUCTOR_Transformer\n", "max_seq_length 512\n" ] } ], "source": [ "embeddings = HuggingFaceInstructEmbeddings(\n", " query_instruction=\"Represent the query for retrieval: \"\n", ")" ] }, { "cell_type": "code", "execution_count": 10, "id": "e1dcc4bd", "metadata": {}, "outputs": [], "source": [ "text = \"This is a test document.\"" ] }, { "cell_type": "code", "execution_count": 11, "id": "90f0db94", "metadata": {}, "outputs": [], "source": [ "query_result = embeddings.embed_query(text)" ] }, { "cell_type": "code", "execution_count": null, "id": "aaad49f8", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" }, "vscode": { "interpreter": { "hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885" } } }, "nbformat": 4, "nbformat_minor": 5 }