{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Embaas\n", "\n", "[embaas](https://embaas.io) is a fully managed NLP API service that offers features like embedding generation, document text extraction, document to embeddings and more. You can choose a [variety of pre-trained models](https://embaas.io/docs/models/embeddings).\n", "\n", "In this tutorial, we will show you how to use the embaas Embeddings API to generate embeddings for a given text.\n", "\n", "### Prerequisites\n", "Create your free embaas account at [https://embaas.io/register](https://embaas.io/register) and generate an [API key](https://embaas.io/dashboard/api-keys)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Set API key\n", "embaas_api_key = \"YOUR_API_KEY\"\n", "# or set environment variable\n", "os.environ[\"EMBAAS_API_KEY\"] = \"YOUR_API_KEY\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from langchain.embeddings import EmbaasEmbeddings" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "embeddings = EmbaasEmbeddings()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2023-06-10T11:17:55.940265Z", "start_time": "2023-06-10T11:17:55.938517Z" } }, "outputs": [], "source": [ "# Create embeddings for a single document\n", "doc_text = \"This is a test document.\"\n", "doc_text_embedding = embeddings.embed_query(doc_text)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Print created embedding\n", "print(doc_text_embedding)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2023-06-10T11:19:25.237161Z", "start_time": "2023-06-10T11:19:25.235320Z" } }, "outputs": [], "source": [ "# Create embeddings for multiple documents\n", "doc_texts = [\"This is a test document.\", \"This is another test document.\"]\n", "doc_texts_embeddings = embeddings.embed_documents(doc_texts)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Print created embeddings\n", "for i, doc_text_embedding in enumerate(doc_texts_embeddings):\n", " print(f\"Embedding for document {i + 1}: {doc_text_embedding}\")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2023-06-10T11:22:26.139769Z", "start_time": "2023-06-10T11:22:26.138357Z" } }, "outputs": [], "source": [ "# Using a different model and/or custom instruction\n", "embeddings = EmbaasEmbeddings(\n", " model=\"instructor-large\",\n", " instruction=\"Represent the Wikipedia document for retrieval\",\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For more detailed information about the embaas Embeddings API, please refer to [the official embaas API documentation](https://embaas.io/api-reference)." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 1 }