{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Minimax\n", "\n", "[Minimax](https://api.minimax.chat) is a Chinese startup that provides natural language processing models for companies and individuals.\n", "\n", "This example demonstrates using Langchain to interact with Minimax." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Setup\n", "\n", "To run this notebook, you'll need a [Minimax account](https://api.minimax.chat), an [API key](https://api.minimax.chat/user-center/basic-information/interface-key), and a [Group ID](https://api.minimax.chat/user-center/basic-information)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Single model call" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "from langchain.llms import Minimax" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "# Load the model\n", "minimax = Minimax(minimax_api_key=\"YOUR_API_KEY\", minimax_group_id=\"YOUR_GROUP_ID\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": true } }, "outputs": [], "source": [ "# Prompt the model\n", "minimax(\"What is the difference between panda and bear?\")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Chained model calls" ] }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# get api_key and group_id: https://api.minimax.chat/user-center/basic-information\n", "# We need `MINIMAX_API_KEY` and `MINIMAX_GROUP_ID`\n", "\n", "import os\n", "\n", "os.environ[\"MINIMAX_API_KEY\"] = \"YOUR_API_KEY\"\n", "os.environ[\"MINIMAX_GROUP_ID\"] = \"YOUR_GROUP_ID\"" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "from langchain.llms import Minimax\n", "from langchain import PromptTemplate, LLMChain" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "template = \"\"\"Question: {question}\n", "\n", "Answer: Let's think step by step.\"\"\"\n", "\n", "prompt = PromptTemplate(template=template, input_variables=[\"question\"])" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "llm = Minimax()" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "llm_chain = LLMChain(prompt=prompt, llm=llm)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "question = \"What NBA team won the Championship in the year Jay Zhou was born?\"\n", "\n", "llm_chain.run(question)" ], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.4" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }