{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# MosaicML\n", "\n", "[MosaicML](https://docs.mosaicml.com/en/latest/inference.html) offers a managed inference service. You can either use a variety of open source models, or deploy your own.\n", "\n", "This example goes over how to use LangChain to interact with MosaicML Inference for text completion." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# sign up for an account: https://forms.mosaicml.com/demo?utm_source=langchain\n", "\n", "from getpass import getpass\n", "\n", "MOSAICML_API_TOKEN = getpass()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "os.environ[\"MOSAICML_API_TOKEN\"] = MOSAICML_API_TOKEN" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from langchain.llms import MosaicML\n", "from langchain.prompts import PromptTemplate\nfrom langchain.chains import LLMChain" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "template = \"\"\"Question: {question}\"\"\"\n", "\n", "prompt = PromptTemplate(template=template, input_variables=[\"question\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "llm = MosaicML(inject_instruction_format=True, model_kwargs={\"max_new_tokens\": 128})" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "llm_chain = LLMChain(prompt=prompt, llm=llm)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "question = \"What is one good reason why you should train a large language model on domain specific data?\"\n", "\n", "llm_chain.run(question)" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3" } }, "nbformat": 4, "nbformat_minor": 2 }