{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Xorbits Inference (Xinference)\n", "\n", "[Xinference](https://github.com/xorbitsai/inference) is a powerful and versatile library designed to serve LLMs, \n", "speech recognition models, and multimodal models, even on your laptop. It supports a variety of models compatible with GGML, such as chatglm, baichuan, whisper, vicuna, orca, and many others. This notebook demonstrates how to use Xinference with LangChain." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Installation\n", "\n", "Install `Xinference` through PyPI:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%pip install \"xinference[all]\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Deploy Xinference Locally or in a Distributed Cluster.\n", "\n", "For local deployment, run `xinference`. \n", "\n", "To deploy Xinference in a cluster, first start an Xinference supervisor using the `xinference-supervisor`. You can also use the option -p to specify the port and -H to specify the host. The default port is 9997.\n", "\n", "Then, start the Xinference workers using `xinference-worker` on each server you want to run them on. \n", "\n", "You can consult the README file from [Xinference](https://github.com/xorbitsai/inference) for more information.\n", "## Wrapper\n", "\n", "To use Xinference with LangChain, you need to first launch a model. You can use command line interface (CLI) to do so:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model uid: 7167b2b0-2a04-11ee-83f0-d29396a3f064\n" ] } ], "source": [ "!xinference launch -n vicuna-v1.3 -f ggmlv3 -q q4_0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A model UID is returned for you to use. Now you can use Xinference with LangChain:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "' You can visit the Eiffel Tower, Notre-Dame Cathedral, the Louvre Museum, and many other historical sites in Paris, the capital of France.'" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from langchain.llms import Xinference\n", "\n", "llm = Xinference(\n", " server_url=\"http://0.0.0.0:9997\",\n", " model_uid = \"7167b2b0-2a04-11ee-83f0-d29396a3f064\"\n", ")\n", "\n", "llm(\n", " prompt=\"Q: where can we visit in the capital of France? A:\",\n", " generate_config={\"max_tokens\": 1024, \"stream\": True},\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Integrate with a LLMChain" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "A: You can visit many places in Paris, such as the Eiffel Tower, the Louvre Museum, Notre-Dame Cathedral, the Champs-Elysées, Montmartre, Sacré-Cœur, and the Palace of Versailles.\n" ] } ], "source": [ "from langchain import PromptTemplate, LLMChain\n", "\n", "template = \"Where can we visit in the capital of {country}?\"\n", "\n", "prompt = PromptTemplate(template=template, input_variables=[\"country\"])\n", "\n", "llm_chain = LLMChain(prompt=prompt, llm=llm)\n", "\n", "generated = llm_chain.run(country=\"France\")\n", "print(generated)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Lastly, terminate the model when you do not need to use it:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "!xinference terminate --model-uid \"7167b2b0-2a04-11ee-83f0-d29396a3f064\"" ] } ], "metadata": { "kernelspec": { "display_name": "myenv3.9", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }