{ "cells": [ { "cell_type": "markdown", "id": "ab66dd43", "metadata": {}, "source": [ "# BM25\n", "\n", "[BM25](https://en.wikipedia.org/wiki/Okapi_BM25) also known as the Okapi BM25, is a ranking function used in information retrieval systems to estimate the relevance of documents to a given search query.\n", "\n", "This notebook goes over how to use a retriever that under the hood uses BM25 using [`rank_bm25`](https://github.com/dorianbrown/rank_bm25) package.\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "a801b57c", "metadata": {}, "outputs": [], "source": [ "# !pip install rank_bm25" ] }, { "cell_type": "code", "execution_count": 1, "id": "393ac030", "metadata": { "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/workspaces/langchain/.venv/lib/python3.10/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.6.10) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.\n", " warnings.warn(\n" ] } ], "source": [ "from langchain.retrievers import BM25Retriever" ] }, { "cell_type": "markdown", "id": "aaf80e7f", "metadata": {}, "source": [ "## Create New Retriever with Texts" ] }, { "cell_type": "code", "execution_count": 2, "id": "98b1c017", "metadata": { "tags": [] }, "outputs": [], "source": [ "retriever = BM25Retriever.from_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"])" ] }, { "cell_type": "markdown", "id": "c016b266", "metadata": {}, "source": [ "## Create a New Retriever with Documents\n", "\n", "You can now create a new retriever with the documents you created." ] }, { "cell_type": "code", "execution_count": 3, "id": "53af4f00", "metadata": {}, "outputs": [], "source": [ "from langchain.schema import Document\n", "\n", "retriever = BM25Retriever.from_documents(\n", " [\n", " Document(page_content=\"foo\"),\n", " Document(page_content=\"bar\"),\n", " Document(page_content=\"world\"),\n", " Document(page_content=\"hello\"),\n", " Document(page_content=\"foo bar\"),\n", " ]\n", ")" ] }, { "cell_type": "markdown", "id": "08437fa2", "metadata": {}, "source": [ "## Use Retriever\n", "\n", "We can now use the retriever!" ] }, { "cell_type": "code", "execution_count": 4, "id": "c0455218", "metadata": { "tags": [] }, "outputs": [], "source": [ "result = retriever.get_relevant_documents(\"foo\")" ] }, { "cell_type": "code", "execution_count": 5, "id": "7dfa5c29", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "[Document(page_content='foo', metadata={}),\n", " Document(page_content='foo bar', metadata={}),\n", " Document(page_content='hello', metadata={}),\n", " Document(page_content='world', metadata={})]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result" ] }, { "cell_type": "code", "execution_count": null, "id": "997aaa8d", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8" } }, "nbformat": 4, "nbformat_minor": 5 }