# Modal This page covers how to use the Modal ecosystem to run LangChain custom LLMs. It is broken into two parts: 1. Modal installation and web endpoint deployment 2. Using deployed web endpoint with `LLM` wrapper class. ## Installation and Setup - Install with `pip install modal` - Run `modal token new` ## Define your Modal Functions and Webhooks You must include a prompt. There is a rigid response structure: ```python class Item(BaseModel): prompt: str @stub.function() @modal.web_endpoint(method="POST") def get_text(item: Item): return {"prompt": run_gpt2.call(item.prompt)} ``` The following is an example with the GPT2 model: ```python from pydantic import BaseModel import modal CACHE_PATH = "/root/model_cache" class Item(BaseModel): prompt: str stub = modal.Stub(name="example-get-started-with-langchain") def download_model(): from transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2') tokenizer.save_pretrained(CACHE_PATH) model.save_pretrained(CACHE_PATH) # Define a container image for the LLM function below, which # downloads and stores the GPT-2 model. image = modal.Image.debian_slim().pip_install( "tokenizers", "transformers", "torch", "accelerate" ).run_function(download_model) @stub.function( gpu="any", image=image, retries=3, ) def run_gpt2(text: str): from transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained(CACHE_PATH) model = GPT2LMHeadModel.from_pretrained(CACHE_PATH) encoded_input = tokenizer(text, return_tensors='pt').input_ids output = model.generate(encoded_input, max_length=50, do_sample=True) return tokenizer.decode(output[0], skip_special_tokens=True) @stub.function() @modal.web_endpoint(method="POST") def get_text(item: Item): return {"prompt": run_gpt2.call(item.prompt)} ``` ### Deploy the web endpoint Deploy the web endpoint to Modal cloud with the [`modal deploy`](https://modal.com/docs/reference/cli/deploy) CLI command. Your web endpoint will acquire a persistent URL under the `modal.run` domain. ## LLM wrapper around Modal web endpoint The `Modal` LLM wrapper class which will accept your deployed web endpoint's URL. ```python from langchain.llms import Modal endpoint_url = "https://ecorp--custom-llm-endpoint.modal.run" # REPLACE ME with your deployed Modal web endpoint's URL llm = Modal(endpoint_url=endpoint_url) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) ```