from typing import Any, Dict, List, Mapping, Optional from langchain_core.embeddings import Embeddings from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator from langchain_core.utils import get_from_dict_or_env DEFAULT_EMBED_INSTRUCTION = "Represent this input: " DEFAULT_QUERY_INSTRUCTION = "Represent the question for retrieving similar documents: " class OctoAIEmbeddings(BaseModel, Embeddings): """OctoAI Compute Service embedding models. The environment variable ``OCTOAI_API_TOKEN`` should be set with your API token, or it can be passed as a named parameter to the constructor. """ endpoint_url: Optional[str] = Field(None, description="Endpoint URL to use.") model_kwargs: Optional[dict] = Field( None, description="Keyword arguments to pass to the model." ) octoai_api_token: Optional[str] = Field(None, description="OCTOAI API Token") embed_instruction: str = Field( DEFAULT_EMBED_INSTRUCTION, description="Instruction to use for embedding documents.", ) query_instruction: str = Field( DEFAULT_QUERY_INSTRUCTION, description="Instruction to use for embedding query." ) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator(allow_reuse=True) def validate_environment(cls, values: Dict) -> Dict: """Ensure that the API key and python package exist in environment.""" values["octoai_api_token"] = get_from_dict_or_env( values, "octoai_api_token", "OCTOAI_API_TOKEN" ) values["endpoint_url"] = get_from_dict_or_env( values, "endpoint_url", "https://text.octoai.run/v1/embeddings" ) return values @property def _identifying_params(self) -> Mapping[str, Any]: """Return the identifying parameters.""" return { "endpoint_url": self.endpoint_url, "model_kwargs": self.model_kwargs or {}, } def _compute_embeddings( self, texts: List[str], instruction: str ) -> List[List[float]]: """Compute embeddings using an OctoAI instruct model.""" from octoai import client embedding = [] embeddings = [] octoai_client = client.Client(token=self.octoai_api_token) for text in texts: parameter_payload = { "sentence": str([text]), "input": str([text]), "instruction": str([instruction]), "model": "thenlper/gte-large", "parameters": self.model_kwargs or {}, } try: resp_json = octoai_client.infer(self.endpoint_url, parameter_payload) if "embeddings" in resp_json: embedding = resp_json["embeddings"] elif "data" in resp_json: json_data = resp_json["data"] for item in json_data: if "embedding" in item: embedding = item["embedding"] except Exception as e: raise ValueError(f"Error raised by the inference endpoint: {e}") from e embeddings.append(embedding) return embeddings def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute document embeddings using an OctoAI instruct model.""" texts = list(map(lambda x: x.replace("\n", " "), texts)) return self._compute_embeddings(texts, self.embed_instruction) def embed_query(self, text: str) -> List[float]: """Compute query embedding using an OctoAI instruct model.""" text = text.replace("\n", " ") return self._compute_embeddings([text], self.query_instruction)[0]