import logging from typing import Dict, List, Optional from langchain_core.embeddings import Embeddings from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator from langchain_core.utils import get_from_dict_or_env logger = logging.getLogger(__name__) class ClarifaiEmbeddings(BaseModel, Embeddings): """Clarifai embedding models. To use, you should have the ``clarifai`` python package installed, and the environment variable ``CLARIFAI_PAT`` set with your personal access token or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain_community.embeddings import ClarifaiEmbeddings clarifai = ClarifaiEmbeddings(user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID) (or) Example_URL = "https://clarifai.com/clarifai/main/models/BAAI-bge-base-en-v15" clarifai = ClarifaiEmbeddings(model_url=EXAMPLE_URL) """ model_url: Optional[str] = None """Model url to use.""" model_id: Optional[str] = None """Model id to use.""" model_version_id: Optional[str] = None """Model version id to use.""" app_id: Optional[str] = None """Clarifai application id to use.""" user_id: Optional[str] = None """Clarifai user id to use.""" pat: Optional[str] = None """Clarifai personal access token to use.""" api_base: str = "https://api.clarifai.com" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that we have all required info to access Clarifai platform and python package exists in environment.""" values["pat"] = get_from_dict_or_env(values, "pat", "CLARIFAI_PAT") user_id = values.get("user_id") app_id = values.get("app_id") model_id = values.get("model_id") model_url = values.get("model_url") if model_url is not None and model_id is not None: raise ValueError("Please provide either model_url or model_id, not both.") if model_url is None and model_id is None: raise ValueError("Please provide one of model_url or model_id.") if model_url is None and model_id is not None: if user_id is None or app_id is None: raise ValueError("Please provide a user_id and app_id.") return values def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Clarifai's embedding models. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ try: from clarifai.client.input import Inputs from clarifai.client.model import Model except ImportError: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) if self.pat is not None: pat = self.pat if self.model_url is not None: _model_init = Model(url=self.model_url, pat=pat) else: _model_init = Model( model_id=self.model_id, user_id=self.user_id, app_id=self.app_id, pat=pat, ) input_obj = Inputs(pat=pat) batch_size = 32 embeddings = [] try: for i in range(0, len(texts), batch_size): batch = texts[i : i + batch_size] input_batch = [ input_obj.get_text_input(input_id=str(id), raw_text=inp) for id, inp in enumerate(batch) ] predict_response = _model_init.predict(input_batch) embeddings.extend( [ list(output.data.embeddings[0].vector) for output in predict_response.outputs ] ) except Exception as e: logger.error(f"Predict failed, exception: {e}") return embeddings def embed_query(self, text: str) -> List[float]: """Call out to Clarifai's embedding models. Args: text: The text to embed. Returns: Embeddings for the text. """ try: from clarifai.client.model import Model except ImportError: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) if self.pat is not None: pat = self.pat if self.model_url is not None: _model_init = Model(url=self.model_url, pat=pat) else: _model_init = Model( model_id=self.model_id, user_id=self.user_id, app_id=self.app_id, pat=pat, ) try: predict_response = _model_init.predict_by_bytes( bytes(text, "utf-8"), input_type="text" ) embeddings = [ list(op.data.embeddings[0].vector) for op in predict_response.outputs ] except Exception as e: logger.error(f"Predict failed, exception: {e}") return embeddings[0]