import logging import re from datetime import datetime from typing import Any, Dict, List, Optional from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.retrievers import TimeWeightedVectorStoreRetriever from langchain.schema import BaseMemory, Document from langchain.utils import mock_now from langchain_core.language_models import BaseLanguageModel logger = logging.getLogger(__name__) class GenerativeAgentMemory(BaseMemory): """Memory for the generative agent.""" llm: BaseLanguageModel """The core language model.""" memory_retriever: TimeWeightedVectorStoreRetriever """The retriever to fetch related memories.""" verbose: bool = False reflection_threshold: Optional[float] = None """When aggregate_importance exceeds reflection_threshold, stop to reflect.""" current_plan: List[str] = [] """The current plan of the agent.""" # A weight of 0.15 makes this less important than it # would be otherwise, relative to salience and time importance_weight: float = 0.15 """How much weight to assign the memory importance.""" aggregate_importance: float = 0.0 # : :meta private: """Track the sum of the 'importance' of recent memories. Triggers reflection when it reaches reflection_threshold.""" max_tokens_limit: int = 1200 # : :meta private: # input keys queries_key: str = "queries" most_recent_memories_token_key: str = "recent_memories_token" add_memory_key: str = "add_memory" # output keys relevant_memories_key: str = "relevant_memories" relevant_memories_simple_key: str = "relevant_memories_simple" most_recent_memories_key: str = "most_recent_memories" now_key: str = "now" reflecting: bool = False def chain(self, prompt: PromptTemplate) -> LLMChain: return LLMChain(llm=self.llm, prompt=prompt, verbose=self.verbose) @staticmethod def _parse_list(text: str) -> List[str]: """Parse a newline-separated string into a list of strings.""" lines = re.split(r"\n", text.strip()) lines = [line for line in lines if line.strip()] # remove empty lines return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines] def _get_topics_of_reflection(self, last_k: int = 50) -> List[str]: """Return the 3 most salient high-level questions about recent observations.""" prompt = PromptTemplate.from_template( "{observations}\n\n" "Given only the information above, what are the 3 most salient " "high-level questions we can answer about the subjects in the statements?\n" "Provide each question on a new line." ) observations = self.memory_retriever.memory_stream[-last_k:] observation_str = "\n".join( [self._format_memory_detail(o) for o in observations] ) result = self.chain(prompt).run(observations=observation_str) return self._parse_list(result) def _get_insights_on_topic( self, topic: str, now: Optional[datetime] = None ) -> List[str]: """Generate 'insights' on a topic of reflection, based on pertinent memories.""" prompt = PromptTemplate.from_template( "Statements relevant to: '{topic}'\n" "---\n" "{related_statements}\n" "---\n" "What 5 high-level novel insights can you infer from the above statements " "that are relevant for answering the following question?\n" "Do not include any insights that are not relevant to the question.\n" "Do not repeat any insights that have already been made.\n\n" "Question: {topic}\n\n" "(example format: insight (because of 1, 5, 3))\n" ) related_memories = self.fetch_memories(topic, now=now) related_statements = "\n".join( [ self._format_memory_detail(memory, prefix=f"{i+1}. ") for i, memory in enumerate(related_memories) ] ) result = self.chain(prompt).run( topic=topic, related_statements=related_statements ) # TODO: Parse the connections between memories and insights return self._parse_list(result) def pause_to_reflect(self, now: Optional[datetime] = None) -> List[str]: """Reflect on recent observations and generate 'insights'.""" if self.verbose: logger.info("Character is reflecting") new_insights = [] topics = self._get_topics_of_reflection() for topic in topics: insights = self._get_insights_on_topic(topic, now=now) for insight in insights: self.add_memory(insight, now=now) new_insights.extend(insights) return new_insights def _score_memory_importance(self, memory_content: str) -> float: """Score the absolute importance of the given memory.""" prompt = PromptTemplate.from_template( "On the scale of 1 to 10, where 1 is purely mundane" + " (e.g., brushing teeth, making bed) and 10 is" + " extremely poignant (e.g., a break up, college" + " acceptance), rate the likely poignancy of the" + " following piece of memory. Respond with a single integer." + "\nMemory: {memory_content}" + "\nRating: " ) score = self.chain(prompt).run(memory_content=memory_content).strip() if self.verbose: logger.info(f"Importance score: {score}") match = re.search(r"^\D*(\d+)", score) if match: return (float(match.group(1)) / 10) * self.importance_weight else: return 0.0 def _score_memories_importance(self, memory_content: str) -> List[float]: """Score the absolute importance of the given memory.""" prompt = PromptTemplate.from_template( "On the scale of 1 to 10, where 1 is purely mundane" + " (e.g., brushing teeth, making bed) and 10 is" + " extremely poignant (e.g., a break up, college" + " acceptance), rate the likely poignancy of the" + " following piece of memory. Always answer with only a list of numbers." + " If just given one memory still respond in a list." + " Memories are separated by semi colans (;)" + "\Memories: {memory_content}" + "\nRating: " ) scores = self.chain(prompt).run(memory_content=memory_content).strip() if self.verbose: logger.info(f"Importance scores: {scores}") # Split into list of strings and convert to floats scores_list = [float(x) for x in scores.split(";")] return scores_list def add_memories( self, memory_content: str, now: Optional[datetime] = None ) -> List[str]: """Add an observations or memories to the agent's memory.""" importance_scores = self._score_memories_importance(memory_content) self.aggregate_importance += max(importance_scores) memory_list = memory_content.split(";") documents = [] for i in range(len(memory_list)): documents.append( Document( page_content=memory_list[i], metadata={"importance": importance_scores[i]}, ) ) result = self.memory_retriever.add_documents(documents, current_time=now) # After an agent has processed a certain amount of memories (as measured by # aggregate importance), it is time to reflect on recent events to add # more synthesized memories to the agent's memory stream. if ( self.reflection_threshold is not None and self.aggregate_importance > self.reflection_threshold and not self.reflecting ): self.reflecting = True self.pause_to_reflect(now=now) # Hack to clear the importance from reflection self.aggregate_importance = 0.0 self.reflecting = False return result def add_memory( self, memory_content: str, now: Optional[datetime] = None ) -> List[str]: """Add an observation or memory to the agent's memory.""" importance_score = self._score_memory_importance(memory_content) self.aggregate_importance += importance_score document = Document( page_content=memory_content, metadata={"importance": importance_score} ) result = self.memory_retriever.add_documents([document], current_time=now) # After an agent has processed a certain amount of memories (as measured by # aggregate importance), it is time to reflect on recent events to add # more synthesized memories to the agent's memory stream. if ( self.reflection_threshold is not None and self.aggregate_importance > self.reflection_threshold and not self.reflecting ): self.reflecting = True self.pause_to_reflect(now=now) # Hack to clear the importance from reflection self.aggregate_importance = 0.0 self.reflecting = False return result def fetch_memories( self, observation: str, now: Optional[datetime] = None ) -> List[Document]: """Fetch related memories.""" if now is not None: with mock_now(now): return self.memory_retriever.get_relevant_documents(observation) else: return self.memory_retriever.get_relevant_documents(observation) def format_memories_detail(self, relevant_memories: List[Document]) -> str: content = [] for mem in relevant_memories: content.append(self._format_memory_detail(mem, prefix="- ")) return "\n".join([f"{mem}" for mem in content]) def _format_memory_detail(self, memory: Document, prefix: str = "") -> str: created_time = memory.metadata["created_at"].strftime("%B %d, %Y, %I:%M %p") return f"{prefix}[{created_time}] {memory.page_content.strip()}" def format_memories_simple(self, relevant_memories: List[Document]) -> str: return "; ".join([f"{mem.page_content}" for mem in relevant_memories]) def _get_memories_until_limit(self, consumed_tokens: int) -> str: """Reduce the number of tokens in the documents.""" result = [] for doc in self.memory_retriever.memory_stream[::-1]: if consumed_tokens >= self.max_tokens_limit: break consumed_tokens += self.llm.get_num_tokens(doc.page_content) if consumed_tokens < self.max_tokens_limit: result.append(doc) return self.format_memories_simple(result) @property def memory_variables(self) -> List[str]: """Input keys this memory class will load dynamically.""" return [] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return key-value pairs given the text input to the chain.""" queries = inputs.get(self.queries_key) now = inputs.get(self.now_key) if queries is not None: relevant_memories = [ mem for query in queries for mem in self.fetch_memories(query, now=now) ] return { self.relevant_memories_key: self.format_memories_detail( relevant_memories ), self.relevant_memories_simple_key: self.format_memories_simple( relevant_memories ), } most_recent_memories_token = inputs.get(self.most_recent_memories_token_key) if most_recent_memories_token is not None: return { self.most_recent_memories_key: self._get_memories_until_limit( most_recent_memories_token ) } return {} def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, Any]) -> None: """Save the context of this model run to memory.""" # TODO: fix the save memory key mem = outputs.get(self.add_memory_key) now = outputs.get(self.now_key) if mem: self.add_memory(mem, now=now) def clear(self) -> None: """Clear memory contents.""" # TODO