{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Getting Started\n", "\n", "In this tutorial, we will learn about creating simple chains in LangChain. We will learn how to create a chain, add components to it, and run it.\n", "\n", "In this tutorial, we will cover:\n", "- Using a simple LLM chain\n", "- Creating sequential chains\n", "- Creating a custom chain\n", "\n", "## Why do we need chains?\n", "\n", "Chains allow us to combine multiple components together to create a single, coherent application. For example, we can create a chain that takes user input, formats it with a PromptTemplate, and then passes the formatted response to an LLM. We can build more complex chains by combining multiple chains together, or by combining chains with other components.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Quick start: Using `LLMChain`\n", "\n", "The `LLMChain` is a simple chain that takes in a prompt template, formats it with the user input and returns the response from an LLM.\n", "\n", "\n", "To use the `LLMChain`, first create a prompt template." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.prompts import PromptTemplate\n", "from langchain.llms import OpenAI\n", "\n", "llm = OpenAI(temperature=0.9)\n", "prompt = PromptTemplate(\n", " input_variables=[\"product\"],\n", " template=\"What is a good name for a company that makes {product}?\",\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now create a very simple chain that will take user input, format the prompt with it, and then send it to the LLM." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "Colorful Toes Co.\n" ] } ], "source": [ "from langchain.chains import LLMChain\n", "chain = LLMChain(llm=llm, prompt=prompt)\n", "\n", "# Run the chain only specifying the input variable.\n", "print(chain.run(\"colorful socks\"))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "If there are multiple variables, you can input them all at once using a dictionary." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "Socktopia Colourful Creations.\n" ] } ], "source": [ "prompt = PromptTemplate(\n", " input_variables=[\"company\", \"product\"],\n", " template=\"What is a good name for {company} that makes {product}?\",\n", ")\n", "chain = LLMChain(llm=llm, prompt=prompt)\n", "print(chain.run({\n", " 'company': \"ABC Startup\",\n", " 'product': \"colorful socks\"\n", " }))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can use a chat model in an `LLMChain` as well:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rainbow Socks Co.\n" ] } ], "source": [ "from langchain.chat_models import ChatOpenAI\n", "from langchain.prompts.chat import (\n", " ChatPromptTemplate,\n", " HumanMessagePromptTemplate,\n", ")\n", "human_message_prompt = HumanMessagePromptTemplate(\n", " prompt=PromptTemplate(\n", " template=\"What is a good name for a company that makes {product}?\",\n", " input_variables=[\"product\"],\n", " )\n", " )\n", "chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])\n", "chat = ChatOpenAI(temperature=0.9)\n", "chain = LLMChain(llm=chat, prompt=chat_prompt_template)\n", "print(chain.run(\"colorful socks\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Different ways of calling chains\n", "\n", "All classes inherited from `Chain` offer a few ways of running chain logic. The most direct one is by using `__call__`:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'adjective': 'corny',\n", " 'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chat = ChatOpenAI(temperature=0)\n", "prompt_template = \"Tell me a {adjective} joke\"\n", "llm_chain = LLMChain(\n", " llm=chat,\n", " prompt=PromptTemplate.from_template(prompt_template)\n", ")\n", "\n", "llm_chain(inputs={\"adjective\":\"corny\"})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By default, `__call__` returns both the input and output key values. You can configure it to only return output key values by setting `return_only_outputs` to `True`." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "llm_chain(\"corny\", return_only_outputs=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If the `Chain` only outputs one output key (i.e. only has one element in its `output_keys`), you can use `run` method. Note that `run` outputs a string instead of a dictionary." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['text']" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# llm_chain only has one output key, so we can use run\n", "llm_chain.output_keys" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Why did the tomato turn red? Because it saw the salad dressing!'" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "llm_chain.run({\"adjective\":\"corny\"})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the case of one input key, you can input the string directly without specifying the input mapping." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'adjective': 'corny',\n", " 'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# These two are equivalent\n", "llm_chain.run({\"adjective\":\"corny\"})\n", "llm_chain.run(\"corny\")\n", "\n", "# These two are also equivalent\n", "llm_chain(\"corny\")\n", "llm_chain({\"adjective\":\"corny\"})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Tips: You can easily integrate a `Chain` object as a `Tool` in your `Agent` via its `run` method. See an example [here](../agents/tools/custom_tools.ipynb)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Add memory to chains\n", "\n", "`Chain` supports taking a `BaseMemory` object as its `memory` argument, allowing `Chain` object to persist data across multiple calls. In other words, it makes `Chain` a stateful object." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'The next four colors of a rainbow are green, blue, indigo, and violet.'" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from langchain.chains import ConversationChain\n", "from langchain.memory import ConversationBufferMemory\n", "\n", "conversation = ConversationChain(\n", " llm=chat,\n", " memory=ConversationBufferMemory()\n", ")\n", "\n", "conversation.run(\"Answer briefly. What are the first 3 colors of a rainbow?\")\n", "# -> The first three colors of a rainbow are red, orange, and yellow.\n", "conversation.run(\"And the next 4?\")\n", "# -> The next four colors of a rainbow are green, blue, indigo, and violet." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Essentially, `BaseMemory` defines an interface of how `langchain` stores memory. It allows reading of stored data through `load_memory_variables` method and storing new data through `save_context` method. You can learn more about it in [Memory](../memory/getting_started.ipynb) section." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Debug Chain\n", "\n", "It can be hard to debug `Chain` object solely from its output as most `Chain` objects involve a fair amount of input prompt preprocessing and LLM output post-processing. Setting `verbose` to `True` will print out some internal states of the `Chain` object while it is being ran." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new ConversationChain chain...\u001b[0m\n", "Prompt after formatting:\n", "\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n", "\n", "Current conversation:\n", "\n", "Human: What is ChatGPT?\n", "AI:\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "'ChatGPT is an AI language model developed by OpenAI. It is based on the GPT-3 architecture and is capable of generating human-like responses to text prompts. ChatGPT has been trained on a massive amount of text data and can understand and respond to a wide range of topics. It is often used for chatbots, virtual assistants, and other conversational AI applications.'" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "conversation = ConversationChain(\n", " llm=chat,\n", " memory=ConversationBufferMemory(),\n", " verbose=True\n", ")\n", "conversation.run(\"What is ChatGPT?\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Combine chains with the `SequentialChain`\n", "\n", "The next step after calling a language model is to make a series of calls to a language model. We can do this using sequential chains, which are chains that execute their links in a predefined order. Specifically, we will use the `SimpleSequentialChain`. This is the simplest type of a sequential chain, where each step has a single input/output, and the output of one step is the input to the next.\n", "\n", "In this tutorial, our sequential chain will:\n", "1. First, create a company name for a product. We will reuse the `LLMChain` we'd previously initialized to create this company name.\n", "2. Then, create a catchphrase for the product. We will initialize a new `LLMChain` to create this catchphrase, as shown below." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "second_prompt = PromptTemplate(\n", " input_variables=[\"company_name\"],\n", " template=\"Write a catchphrase for the following company: {company_name}\",\n", ")\n", "chain_two = LLMChain(llm=llm, prompt=second_prompt)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can combine the two LLMChains, so that we can create a company name and a catchphrase in a single step." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new SimpleSequentialChain chain...\u001b[0m\n", "\u001b[36;1m\u001b[1;3mRainbow Socks Co.\u001b[0m\n", "\u001b[33;1m\u001b[1;3m\n", "\n", "\"Put a little rainbow in your step!\"\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n", "\n", "\n", "\"Put a little rainbow in your step!\"\n" ] } ], "source": [ "from langchain.chains import SimpleSequentialChain\n", "overall_chain = SimpleSequentialChain(chains=[chain, chain_two], verbose=True)\n", "\n", "# Run the chain specifying only the input variable for the first chain.\n", "catchphrase = overall_chain.run(\"colorful socks\")\n", "print(catchphrase)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create a custom chain with the `Chain` class\n", "\n", "LangChain provides many chains out of the box, but sometimes you may want to create a custom chain for your specific use case. For this example, we will create a custom chain that concatenates the outputs of 2 `LLMChain`s.\n", "\n", "In order to create a custom chain:\n", "1. Start by subclassing the `Chain` class,\n", "2. Fill out the `input_keys` and `output_keys` properties,\n", "3. Add the `_call` method that shows how to execute the chain.\n", "\n", "These steps are demonstrated in the example below:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "from langchain.chains import LLMChain\n", "from langchain.chains.base import Chain\n", "\n", "from typing import Dict, List\n", "\n", "\n", "class ConcatenateChain(Chain):\n", " chain_1: LLMChain\n", " chain_2: LLMChain\n", "\n", " @property\n", " def input_keys(self) -> List[str]:\n", " # Union of the input keys of the two chains.\n", " all_input_vars = set(self.chain_1.input_keys).union(set(self.chain_2.input_keys))\n", " return list(all_input_vars)\n", "\n", " @property\n", " def output_keys(self) -> List[str]:\n", " return ['concat_output']\n", "\n", " def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:\n", " output_1 = self.chain_1.run(inputs)\n", " output_2 = self.chain_2.run(inputs)\n", " return {'concat_output': output_1 + output_2}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we can try running the chain that we called.\n", "\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Concatenated output:\n", "\n", "\n", "Funky Footwear Company\n", "\n", "\"Brighten Up Your Day with Our Colorful Socks!\"\n" ] } ], "source": [ "prompt_1 = PromptTemplate(\n", " input_variables=[\"product\"],\n", " template=\"What is a good name for a company that makes {product}?\",\n", ")\n", "chain_1 = LLMChain(llm=llm, prompt=prompt_1)\n", "\n", "prompt_2 = PromptTemplate(\n", " input_variables=[\"product\"],\n", " template=\"What is a good slogan for a company that makes {product}?\",\n", ")\n", "chain_2 = LLMChain(llm=llm, prompt=prompt_2)\n", "\n", "concat_chain = ConcatenateChain(chain_1=chain_1, chain_2=chain_2)\n", "concat_output = concat_chain.run(\"colorful socks\")\n", "print(f\"Concatenated output:\\n{concat_output}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That's it! For more details about how to do cool things with Chains, check out the [how-to guide](how_to_guides.rst) for chains." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" }, "vscode": { "interpreter": { "hash": "b1677b440931f40d89ef8be7bf03acb108ce003de0ac9b18e8d43753ea2e7103" } } }, "nbformat": 4, "nbformat_minor": 4 }