{ "cells": [ { "cell_type": "markdown", "id": "052dfe58", "metadata": {}, "source": [ "# How (and why) to use the fake LLM\n", "We expose a fake LLM class that can be used for testing. This allows you to mock out calls to the LLM and simulate what would happen if the LLM responded in a certain way.\n", "\n", "In this notebook we go over how to use this.\n", "\n", "We start this with using the FakeLLM in an agent." ] }, { "cell_type": "code", "execution_count": 1, "id": "ef97ac4d", "metadata": {}, "outputs": [], "source": [ "from langchain.llms.fake import FakeListLLM" ] }, { "cell_type": "code", "execution_count": 2, "id": "9a0a160f", "metadata": {}, "outputs": [], "source": [ "from langchain.agents import load_tools\n", "from langchain.agents import initialize_agent" ] }, { "cell_type": "code", "execution_count": 3, "id": "b272258c", "metadata": {}, "outputs": [], "source": [ "tools = load_tools([\"python_repl\"])" ] }, { "cell_type": "code", "execution_count": 16, "id": "94096c4c", "metadata": {}, "outputs": [], "source": [ "responses=[\n", " \"Action: Python REPL\\nAction Input: print(2 + 2)\",\n", " \"Final Answer: 4\"\n", "]\n", "llm = FakeListLLM(responses=responses)" ] }, { "cell_type": "code", "execution_count": 17, "id": "da226d02", "metadata": {}, "outputs": [], "source": [ "agent = initialize_agent(tools, llm, agent=\"zero-shot-react-description\", verbose=True)" ] }, { "cell_type": "code", "execution_count": 18, "id": "44c13426", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", "\u001b[32;1m\u001b[1;3mAction: Python REPL\n", "Action Input: print(2 + 2)\u001b[0m\n", "Observation: \u001b[36;1m\u001b[1;3m4\n", "\u001b[0m\n", "Thought:\u001b[32;1m\u001b[1;3mFinal Answer: 4\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "'4'" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "agent.run(\"whats 2 + 2\")" ] }, { "cell_type": "code", "execution_count": null, "id": "814c2858", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }