{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Apify Dataset\n", "\n", ">[Apify Dataset](https://docs.apify.com/platform/storage/dataset) is a scaleable append-only storage with sequential access built for storing structured web scraping results, such as a list of products or Google SERPs, and then export them to various formats like JSON, CSV, or Excel. Datasets are mainly used to save results of [Apify Actors](https://apify.com/store)—serverless cloud programs for varius web scraping, crawling, and data extraction use cases.\n", "\n", "This notebook shows how to load Apify datasets to LangChain.\n", "\n", "\n", "## Prerequisites\n", "\n", "You need to have an existing dataset on the Apify platform. If you don't have one, please first check out [this notebook](/docs/modules/agents/tools/integrations/apify.html) on how to use Apify to extract content from documentation, knowledge bases, help centers, or blogs." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "#!pip install apify-client" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, import `ApifyDatasetLoader` into your source code:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import ApifyDatasetLoader\n", "from langchain.document_loaders.base import Document" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then provide a function that maps Apify dataset record fields to LangChain `Document` format.\n", "\n", "For example, if your dataset items are structured like this:\n", "\n", "```json\n", "{\n", " \"url\": \"https://apify.com\",\n", " \"text\": \"Apify is the best web scraping and automation platform.\"\n", "}\n", "```\n", "\n", "The mapping function in the code below will convert them to LangChain `Document` format, so that you can use them further with any LLM model (e.g. for question answering)." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "loader = ApifyDatasetLoader(\n", " dataset_id=\"your-dataset-id\",\n", " dataset_mapping_function=lambda dataset_item: Document(\n", " page_content=dataset_item[\"text\"], metadata={\"source\": dataset_item[\"url\"]}\n", " ),\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = loader.load()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## An example with question answering\n", "\n", "In this example, we use data from a dataset to answer a question." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "from langchain.docstore.document import Document\n", "from langchain.document_loaders import ApifyDatasetLoader\n", "from langchain.indexes import VectorstoreIndexCreator" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "loader = ApifyDatasetLoader(\n", " dataset_id=\"your-dataset-id\",\n", " dataset_mapping_function=lambda item: Document(\n", " page_content=item[\"text\"] or \"\", metadata={\"source\": item[\"url\"]}\n", " ),\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "index = VectorstoreIndexCreator().from_loaders([loader])" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "query = \"What is Apify?\"\n", "result = index.query_with_sources(query)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Apify is a platform for developing, running, and sharing serverless cloud programs. It enables users to create web scraping and automation tools and publish them on the Apify platform.\n", "\n", "https://docs.apify.com/platform/actors, https://docs.apify.com/platform/actors/running/actors-in-store, https://docs.apify.com/platform/security, https://docs.apify.com/platform/actors/examples\n" ] } ], "source": [ "print(result[\"answer\"])\n", "print(result[\"sources\"])" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.3" } }, "nbformat": 4, "nbformat_minor": 4 }