import json
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union, cast
from langchain_core._api import deprecated
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel, LangSmithParams
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
ChatMessage,
HumanMessage,
SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_community.llms.ollama import OllamaEndpointNotFoundError, _OllamaCommon
@deprecated("0.0.3", alternative="_chat_stream_response_to_chat_generation_chunk")
def _stream_response_to_chat_generation_chunk(
stream_response: str,
) -> ChatGenerationChunk:
"""Convert a stream response to a generation chunk."""
parsed_response = json.loads(stream_response)
generation_info = parsed_response if parsed_response.get("done") is True else None
return ChatGenerationChunk(
message=AIMessageChunk(content=parsed_response.get("response", "")),
generation_info=generation_info,
)
def _chat_stream_response_to_chat_generation_chunk(
stream_response: str,
) -> ChatGenerationChunk:
"""Convert a stream response to a generation chunk."""
parsed_response = json.loads(stream_response)
generation_info = parsed_response if parsed_response.get("done") is True else None
return ChatGenerationChunk(
message=AIMessageChunk(
content=parsed_response.get("message", {}).get("content", "")
),
generation_info=generation_info,
)
class ChatOllama(BaseChatModel, _OllamaCommon):
"""Ollama locally runs large language models.
To use, follow the instructions at https://ollama.ai/.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatOllama
ollama = ChatOllama(model="llama2")
"""
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "ollama-chat"
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return whether this model can be serialized by Langchain."""
return False
def _get_ls_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> LangSmithParams:
"""Get standard params for tracing."""
params = self._get_invocation_params(stop=stop, **kwargs)
ls_params = LangSmithParams(
ls_provider="ollama",
ls_model_name=self.model,
ls_model_type="chat",
ls_temperature=params.get("temperature", self.temperature),
)
if ls_max_tokens := params.get("num_predict", self.num_predict):
ls_params["ls_max_tokens"] = ls_max_tokens
if ls_stop := stop or params.get("stop", None) or self.stop:
ls_params["ls_stop"] = ls_stop
return ls_params
@deprecated("0.0.3", alternative="_convert_messages_to_ollama_messages")
def _format_message_as_text(self, message: BaseMessage) -> str:
if isinstance(message, ChatMessage):
message_text = f"\n\n{message.role.capitalize()}: {message.content}"
elif isinstance(message, HumanMessage):
if isinstance(message.content, List):
first_content = cast(List[Dict], message.content)[0]
content_type = first_content.get("type")
if content_type == "text":
message_text = f"[INST] {first_content['text']} [/INST]"
elif content_type == "image_url":
message_text = first_content["image_url"]["url"]
else:
message_text = f"[INST] {message.content} [/INST]"
elif isinstance(message, AIMessage):
message_text = f"{message.content}"
elif isinstance(message, SystemMessage):
message_text = f"<> {message.content} <>"
else:
raise ValueError(f"Got unknown type {message}")
return message_text
def _format_messages_as_text(self, messages: List[BaseMessage]) -> str:
return "\n".join(
[self._format_message_as_text(message) for message in messages]
)
def _convert_messages_to_ollama_messages(
self, messages: List[BaseMessage]
) -> List[Dict[str, Union[str, List[str]]]]:
ollama_messages: List = []
for message in messages:
role = ""
if isinstance(message, HumanMessage):
role = "user"
elif isinstance(message, AIMessage):
role = "assistant"
elif isinstance(message, SystemMessage):
role = "system"
else:
raise ValueError("Received unsupported message type for Ollama.")
content = ""
images = []
if isinstance(message.content, str):
content = message.content
else:
for content_part in cast(List[Dict], message.content):
if content_part.get("type") == "text":
content += f"\n{content_part['text']}"
elif content_part.get("type") == "image_url":
image_url = None
temp_image_url = content_part.get("image_url")
if isinstance(temp_image_url, str):
image_url = content_part["image_url"]
elif (
isinstance(temp_image_url, dict) and "url" in temp_image_url
):
image_url = temp_image_url
else:
raise ValueError(
"Only string image_url or dict with string 'url' "
"inside content parts are supported."
)
image_url_components = image_url.split(",")
# Support data:image/jpeg;base64, format
# and base64 strings
if len(image_url_components) > 1:
images.append(image_url_components[1])
else:
images.append(image_url_components[0])
else:
raise ValueError(
"Unsupported message content type. "
"Must either have type 'text' or type 'image_url' "
"with a string 'image_url' field."
)
ollama_messages.append(
{
"role": role,
"content": content,
"images": images,
}
)
return ollama_messages
def _create_chat_stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Iterator[str]:
payload = {
"model": self.model,
"messages": self._convert_messages_to_ollama_messages(messages),
}
yield from self._create_stream(
payload=payload, stop=stop, api_url=f"{self.base_url}/api/chat", **kwargs
)
async def _acreate_chat_stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> AsyncIterator[str]:
payload = {
"model": self.model,
"messages": self._convert_messages_to_ollama_messages(messages),
}
async for stream_resp in self._acreate_stream(
payload=payload, stop=stop, api_url=f"{self.base_url}/api/chat", **kwargs
):
yield stream_resp
def _chat_stream_with_aggregation(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
verbose: bool = False,
**kwargs: Any,
) -> ChatGenerationChunk:
final_chunk: Optional[ChatGenerationChunk] = None
for stream_resp in self._create_chat_stream(messages, stop, **kwargs):
if stream_resp:
chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp)
if final_chunk is None:
final_chunk = chunk
else:
final_chunk += chunk
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=verbose,
)
if final_chunk is None:
raise ValueError("No data received from Ollama stream.")
return final_chunk
async def _achat_stream_with_aggregation(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
verbose: bool = False,
**kwargs: Any,
) -> ChatGenerationChunk:
final_chunk: Optional[ChatGenerationChunk] = None
async for stream_resp in self._acreate_chat_stream(messages, stop, **kwargs):
if stream_resp:
chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp)
if final_chunk is None:
final_chunk = chunk
else:
final_chunk += chunk
if run_manager:
await run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=verbose,
)
if final_chunk is None:
raise ValueError("No data received from Ollama stream.")
return final_chunk
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Call out to Ollama's generate endpoint.
Args:
messages: The list of base messages to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
Chat generations from the model
Example:
.. code-block:: python
response = ollama([
HumanMessage(content="Tell me about the history of AI")
])
"""
final_chunk = self._chat_stream_with_aggregation(
messages,
stop=stop,
run_manager=run_manager,
verbose=self.verbose,
**kwargs,
)
chat_generation = ChatGeneration(
message=AIMessage(content=final_chunk.text),
generation_info=final_chunk.generation_info,
)
return ChatResult(generations=[chat_generation])
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Call out to Ollama's generate endpoint.
Args:
messages: The list of base messages to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
Chat generations from the model
Example:
.. code-block:: python
response = ollama([
HumanMessage(content="Tell me about the history of AI")
])
"""
final_chunk = await self._achat_stream_with_aggregation(
messages,
stop=stop,
run_manager=run_manager,
verbose=self.verbose,
**kwargs,
)
chat_generation = ChatGeneration(
message=AIMessage(content=final_chunk.text),
generation_info=final_chunk.generation_info,
)
return ChatResult(generations=[chat_generation])
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
try:
for stream_resp in self._create_chat_stream(messages, stop, **kwargs):
if stream_resp:
chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp)
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=self.verbose,
)
yield chunk
except OllamaEndpointNotFoundError:
yield from self._legacy_stream(messages, stop, **kwargs)
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
async for stream_resp in self._acreate_chat_stream(messages, stop, **kwargs):
if stream_resp:
chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp)
if run_manager:
await run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=self.verbose,
)
yield chunk
@deprecated("0.0.3", alternative="_stream")
def _legacy_stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
prompt = self._format_messages_as_text(messages)
for stream_resp in self._create_generate_stream(prompt, stop, **kwargs):
if stream_resp:
chunk = _stream_response_to_chat_generation_chunk(stream_resp)
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=self.verbose,
)
yield chunk