# Redis This page covers how to use the [Redis](https://redis.com) ecosystem within LangChain. It is broken into two parts: installation and setup, and then references to specific Redis wrappers. ## Installation and Setup - Install the Redis Python SDK with `pip install redis` ## Wrappers All wrappers needing a redis url connection string to connect to the database support either a stand alone Redis server or a High-Availability setup with Replication and Redis Sentinels. ### Redis Standalone connection url For standalone Redis server the official redis connection url formats can be used as describe in the python redis modules "from_url()" method [Redis.from_url](https://redis-py.readthedocs.io/en/stable/connections.html#redis.Redis.from_url) Example: `redis_url = "redis://:secret-pass@localhost:6379/0"` ### Redis Sentinel connection url For [Redis sentinel setups](https://redis.io/docs/management/sentinel/) the connection scheme is "redis+sentinel". This is an un-offical extensions to the official IANA registered protocol schemes as long as there is no connection url for Sentinels available. Example: `redis_url = "redis+sentinel://:secret-pass@sentinel-host:26379/mymaster/0"` The format is `redis+sentinel://[[username]:[password]]@[host-or-ip]:[port]/[service-name]/[db-number]` with the default values of "service-name = mymaster" and "db-number = 0" if not set explicit. The service-name is the redis server monitoring group name as configured within the Sentinel. The current url format limits the connection string to one sentinel host only (no list can be given) and booth Redis server and sentinel must have the same password set (if used). ### Redis Cluster connection url Redis cluster is not supported right now for all methods requiring a "redis_url" parameter. The only way to use a Redis Cluster is with LangChain classes accepting a preconfigured Redis client like `RedisCache` (example below). ### Cache The Cache wrapper allows for [Redis](https://redis.io) to be used as a remote, low-latency, in-memory cache for LLM prompts and responses. #### Standard Cache The standard cache is the Redis bread & butter of use case in production for both [open source](https://redis.io) and [enterprise](https://redis.com) users globally. To import this cache: ```python from langchain.cache import RedisCache ``` To use this cache with your LLMs: ```python import langchain import redis redis_client = redis.Redis.from_url(...) langchain.llm_cache = RedisCache(redis_client) ``` #### Semantic Cache Semantic caching allows users to retrieve cached prompts based on semantic similarity between the user input and previously cached results. Under the hood it blends Redis as both a cache and a vectorstore. To import this cache: ```python from langchain.cache import RedisSemanticCache ``` To use this cache with your LLMs: ```python import langchain import redis # use any embedding provider... from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings redis_url = "redis://localhost:6379" langchain.llm_cache = RedisSemanticCache( embedding=FakeEmbeddings(), redis_url=redis_url ) ``` ### VectorStore The vectorstore wrapper turns Redis into a low-latency [vector database](https://redis.com/solutions/use-cases/vector-database/) for semantic search or LLM content retrieval. To import this vectorstore: ```python from langchain.vectorstores import Redis ``` For a more detailed walkthrough of the Redis vectorstore wrapper, see [this notebook](/docs/modules/data_connection/vectorstores/integrations/redis.html). ### Retriever The Redis vector store retriever wrapper generalizes the vectorstore class to perform low-latency document retrieval. To create the retriever, simply call `.as_retriever()` on the base vectorstore class. ### Memory Redis can be used to persist LLM conversations. #### Vector Store Retriever Memory For a more detailed walkthrough of the `VectorStoreRetrieverMemory` wrapper, see [this notebook](/docs/modules/memory/integrations/vectorstore_retriever_memory.html). #### Chat Message History Memory For a detailed example of Redis to cache conversation message history, see [this notebook](/docs/modules/memory/integrations/redis_chat_message_history.html).