"""Test Weaviate functionality.""" import logging import os import uuid from typing import Generator, Union import pytest from weaviate import Client from langchain.docstore.document import Document from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores.weaviate import Weaviate from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings logging.basicConfig(level=logging.DEBUG) """ cd tests/integration_tests/vectorstores/docker-compose docker compose -f weaviate.yml up """ class TestWeaviate: @classmethod def setup_class(cls) -> None: if not os.getenv("OPENAI_API_KEY"): raise ValueError("OPENAI_API_KEY environment variable is not set") @pytest.fixture(scope="class", autouse=True) def weaviate_url(self) -> Union[str, Generator[str, None, None]]: """Return the weaviate url.""" url = "http://localhost:8080" yield url # Clear the test index client = Client(url) client.schema.delete_all() @pytest.mark.vcr(ignore_localhost=True) def test_similarity_search_without_metadata( self, weaviate_url: str, embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and search without metadata.""" texts = ["foo", "bar", "baz"] docsearch = Weaviate.from_texts( texts, embedding_openai, weaviate_url=weaviate_url, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] @pytest.mark.vcr(ignore_localhost=True) def test_similarity_search_with_metadata( self, weaviate_url: str, embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and search with metadata.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Weaviate.from_texts( texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": 0})] @pytest.mark.vcr(ignore_localhost=True) def test_similarity_search_with_metadata_and_filter( self, weaviate_url: str, embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and search with metadata.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Weaviate.from_texts( texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url ) output = docsearch.similarity_search( "foo", k=2, where_filter={"path": ["page"], "operator": "Equal", "valueNumber": 0}, ) assert output == [Document(page_content="foo", metadata={"page": 0})] @pytest.mark.vcr(ignore_localhost=True) def test_similarity_search_with_metadata_and_additional( self, weaviate_url: str, embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and search with metadata and additional.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Weaviate.from_texts( texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url ) output = docsearch.similarity_search( "foo", k=1, additional=["certainty"], ) assert output == [ Document( page_content="foo", metadata={"page": 0, "_additional": {"certainty": 1}}, ) ] @pytest.mark.vcr(ignore_localhost=True) def test_similarity_search_with_uuids( self, weaviate_url: str, embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and search with uuids.""" texts = ["foo", "bar", "baz"] # Weaviate replaces the object if the UUID already exists uuids = [uuid.uuid5(uuid.NAMESPACE_DNS, "same-name") for text in texts] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Weaviate.from_texts( texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url, uuids=uuids, ) output = docsearch.similarity_search("foo", k=2) assert len(output) == 1 @pytest.mark.vcr(ignore_localhost=True) def test_max_marginal_relevance_search( self, weaviate_url: str, embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and MRR search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Weaviate.from_texts( texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url ) # if lambda=1 the algorithm should be equivalent to standard ranking standard_ranking = docsearch.similarity_search("foo", k=2) output = docsearch.max_marginal_relevance_search( "foo", k=2, fetch_k=3, lambda_mult=1.0 ) assert output == standard_ranking # if lambda=0 the algorithm should favour maximal diversity output = docsearch.max_marginal_relevance_search( "foo", k=2, fetch_k=3, lambda_mult=0.0 ) assert output == [ Document(page_content="foo", metadata={"page": 0}), Document(page_content="bar", metadata={"page": 1}), ] @pytest.mark.vcr(ignore_localhost=True) def test_max_marginal_relevance_search_by_vector( self, weaviate_url: str, embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and MRR search by vector.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Weaviate.from_texts( texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url ) foo_embedding = embedding_openai.embed_query("foo") # if lambda=1 the algorithm should be equivalent to standard ranking standard_ranking = docsearch.similarity_search("foo", k=2) output = docsearch.max_marginal_relevance_search_by_vector( foo_embedding, k=2, fetch_k=3, lambda_mult=1.0 ) assert output == standard_ranking # if lambda=0 the algorithm should favour maximal diversity output = docsearch.max_marginal_relevance_search_by_vector( foo_embedding, k=2, fetch_k=3, lambda_mult=0.0 ) assert output == [ Document(page_content="foo", metadata={"page": 0}), Document(page_content="bar", metadata={"page": 1}), ] @pytest.mark.vcr(ignore_localhost=True) def test_max_marginal_relevance_search_with_filter( self, weaviate_url: str, embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and MRR search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Weaviate.from_texts( texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url ) where_filter = {"path": ["page"], "operator": "Equal", "valueNumber": 0} # if lambda=1 the algorithm should be equivalent to standard ranking standard_ranking = docsearch.similarity_search( "foo", k=2, where_filter=where_filter ) output = docsearch.max_marginal_relevance_search( "foo", k=2, fetch_k=3, lambda_mult=1.0, where_filter=where_filter ) assert output == standard_ranking # if lambda=0 the algorithm should favour maximal diversity output = docsearch.max_marginal_relevance_search( "foo", k=2, fetch_k=3, lambda_mult=0.0, where_filter=where_filter ) assert output == [ Document(page_content="foo", metadata={"page": 0}), ] def test_add_texts_with_given_embedding(self, weaviate_url: str) -> None: texts = ["foo", "bar", "baz"] embedding = FakeEmbeddings() docsearch = Weaviate.from_texts( texts, embedding=embedding, weaviate_url=weaviate_url ) docsearch.add_texts(["foo"]) output = docsearch.similarity_search_by_vector( embedding.embed_query("foo"), k=2 ) assert output == [ Document(page_content="foo"), Document(page_content="foo"), ] def test_add_texts_with_given_uuids(self, weaviate_url: str) -> None: texts = ["foo", "bar", "baz"] embedding = FakeEmbeddings() uuids = [uuid.uuid5(uuid.NAMESPACE_DNS, text) for text in texts] docsearch = Weaviate.from_texts( texts, embedding=embedding, weaviate_url=weaviate_url, uuids=uuids, ) # Weaviate replaces the object if the UUID already exists docsearch.add_texts(["foo"], uuids=[uuids[0]]) output = docsearch.similarity_search_by_vector( embedding.embed_query("foo"), k=2 ) assert output[0] == Document(page_content="foo") assert output[1] != Document(page_content="foo")