import os from langchain.chat_models import ChatOpenAI from langchain.prompts import ChatPromptTemplate from langchain.pydantic_v1 import BaseModel from langchain.retrievers.multi_query import MultiQueryRetriever from langchain.schema.output_parser import StrOutputParser from langchain.schema.runnable import RunnableParallel, RunnablePassthrough from langchain.vectorstores import Vectara if os.environ.get("VECTARA_CUSTOMER_ID", None) is None: raise Exception("Missing `VECTARA_CUSTOMER_ID` environment variable.") if os.environ.get("VECTARA_CORPUS_ID", None) is None: raise Exception("Missing `VECTARA_CORPUS_ID` environment variable.") if os.environ.get("VECTARA_API_KEY", None) is None: raise Exception("Missing `VECTARA_API_KEY` environment variable.") # If you want to ingest data then use this code. # Note that no document chunking is needed, as this is # done efficiently in the Vectara backend. # Note: you will need to install beautifulsoup4 to ingest # from langchain.document_loaders import WebBaseLoader # from langchain.embeddings import OpenAIEmbeddings # loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") # docs = loader.load() # vec_store = Vectara.from_documents(docs, embedding=OpenAIEmbeddings()) # retriever = vec_store.as_retriever() # Otherwise, if data is already loaded into Vectara then use this code: llm = ChatOpenAI(temperature=0) retriever = MultiQueryRetriever.from_llm(retriever=Vectara().as_retriever(), llm=llm) # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)