{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Question answering over a group chat messages\n", "In this tutorial, we are going to use Langchain + Deep Lake with GPT4 to semantically search and ask questions over a group chat.\n", "\n", "View a working demo [here](https://twitter.com/thisissukh_/status/1647223328363679745)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Install required packages" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!python3 -m pip install --upgrade langchain deeplake openai tiktoken" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Add API keys" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import os\n", "import getpass\n", "from langchain.document_loaders import PyPDFLoader, TextLoader\n", "from langchain.embeddings.openai import OpenAIEmbeddings\n", "from langchain.text_splitter import (\n", " RecursiveCharacterTextSplitter,\n", " CharacterTextSplitter,\n", ")\n", "from langchain.vectorstores import DeepLake\n", "from langchain.chains import ConversationalRetrievalChain, RetrievalQA\n", "from langchain.chat_models import ChatOpenAI\n", "from langchain.llms import OpenAI\n", "\n", "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", "os.environ[\"ACTIVELOOP_TOKEN\"] = getpass.getpass(\"Activeloop Token:\")\n", "os.environ[\"ACTIVELOOP_ORG\"] = getpass.getpass(\"Activeloop Org:\")\n", "\n", "org = os.environ[\"ACTIVELOOP_ORG\"]\n", "embeddings = OpenAIEmbeddings()\n", "\n", "dataset_path = \"hub://\" + org + \"/data\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "## 2. Create sample data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can generate a sample group chat conversation using ChatGPT with this prompt:\n", "\n", "```\n", "Generate a group chat conversation with three friends talking about their day, referencing real places and fictional names. Make it funny and as detailed as possible.\n", "```\n", "\n", "I've already generated such a chat in `messages.txt`. We can keep it simple and use this for our example.\n", "\n", "## 3. Ingest chat embeddings\n", "\n", "We load the messages in the text file, chunk and upload to ActiveLoop Vector store." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "with open(\"messages.txt\") as f:\n", " state_of_the_union = f.read()\n", "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n", "pages = text_splitter.split_text(state_of_the_union)\n", "\n", "text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)\n", "texts = text_splitter.create_documents(pages)\n", "\n", "print(texts)\n", "\n", "dataset_path = \"hub://\" + org + \"/data\"\n", "embeddings = OpenAIEmbeddings()\n", "db = DeepLake.from_documents(\n", " texts, embeddings, dataset_path=dataset_path, overwrite=True\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Ask questions\n", "\n", "Now we can ask a question and get an answer back with a semantic search:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)\n", "\n", "retriever = db.as_retriever()\n", "retriever.search_kwargs[\"distance_metric\"] = \"cos\"\n", "retriever.search_kwargs[\"k\"] = 4\n", "\n", "qa = RetrievalQA.from_chain_type(\n", " llm=OpenAI(), chain_type=\"stuff\", retriever=retriever, return_source_documents=False\n", ")\n", "\n", "# What was the restaurant the group was talking about called?\n", "query = input(\"Enter query:\")\n", "\n", "# The Hungry Lobster\n", "ans = qa({\"query\": query})\n", "\n", "print(ans)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 2 }