# Load from langchain_chroma import Chroma from langchain_community.chat_models import ChatOllama from langchain_community.document_loaders import WebBaseLoader from langchain_community.embeddings import GPT4AllEmbeddings from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_text_splitters import RecursiveCharacterTextSplitter loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") data = loader.load() # Split text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) all_splits = text_splitter.split_documents(data) # Add to vectorDB vectorstore = Chroma.from_documents( documents=all_splits, collection_name="rag-private", embedding=GPT4AllEmbeddings(), ) retriever = vectorstore.as_retriever() # Prompt # Optionally, pull from the Hub # from langchain import hub # prompt = hub.pull("rlm/rag-prompt") # Or, define your own: template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # LLM # Select the LLM that you downloaded ollama_llm = "llama2:7b-chat" model = ChatOllama(model=ollama_llm) # RAG chain chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)