{ "cells": [ { "cell_type": "markdown", "id": "e8624be2", "metadata": {}, "source": [ "# RePhraseQueryRetriever\n", "\n", "Simple retriever that applies an LLM between the user input and the query pass the to retriever.\n", "\n", "It can be used to pre-process the user input in any way.\n", "\n", "The default prompt used in the `from_llm` classmethod:\n", "\n", "```\n", "DEFAULT_TEMPLATE = \"\"\"You are an assistant tasked with taking a natural language \\\n", "query from a user and converting it into a query for a vectorstore. \\\n", "In this process, you strip out information that is not relevant for \\\n", "the retrieval task. Here is the user query: {question}\"\"\"\n", "```\n", "\n", "Create a vectorstore." ] }, { "cell_type": "code", "execution_count": 1, "id": "1bfa6834", "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import WebBaseLoader\n", "\n", "loader = WebBaseLoader(\"https://lilianweng.github.io/posts/2023-06-23-agent/\")\n", "data = loader.load()\n", "\n", "from langchain.text_splitter import RecursiveCharacterTextSplitter\n", "\n", "text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n", "all_splits = text_splitter.split_documents(data)\n", "\n", "from langchain.vectorstores import Chroma\n", "from langchain.embeddings import OpenAIEmbeddings\n", "\n", "vectorstore = Chroma.from_documents(documents=all_splits, embedding=OpenAIEmbeddings())" ] }, { "cell_type": "code", "execution_count": 2, "id": "d0b51556", "metadata": {}, "outputs": [], "source": [ "import logging\n", "\n", "logging.basicConfig()\n", "logging.getLogger(\"langchain.retrievers.re_phraser\").setLevel(logging.INFO)" ] }, { "cell_type": "code", "execution_count": 3, "id": "20e1e787", "metadata": {}, "outputs": [], "source": [ "from langchain.chat_models import ChatOpenAI\n", "from langchain.retrievers import RePhraseQueryRetriever" ] }, { "cell_type": "markdown", "id": "88c0a972", "metadata": {}, "source": [ "## Using the default prompt" ] }, { "cell_type": "code", "execution_count": 4, "id": "503994bd", "metadata": {}, "outputs": [], "source": [ "llm = ChatOpenAI(temperature=0)\n", "retriever_from_llm = RePhraseQueryRetriever.from_llm(\n", " retriever=vectorstore.as_retriever(), llm=llm\n", ")" ] }, { "cell_type": "code", "execution_count": 5, "id": "8d17ecc9", "metadata": { "scrolled": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:langchain.retrievers.re_phraser:Re-phrased question: The user query can be converted into a query for a vectorstore as follows:\n", "\n", "\"approaches to Task Decomposition\"\n" ] } ], "source": [ "docs = retriever_from_llm.get_relevant_documents(\n", " \"Hi I'm Lance. What are the approaches to Task Decomposition?\"\n", ")" ] }, { "cell_type": "code", "execution_count": 6, "id": "76d54f1a", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:langchain.retrievers.re_phraser:Re-phrased question: Query for vectorstore: \"Types of Memory\"\n" ] } ], "source": [ "docs = retriever_from_llm.get_relevant_documents(\n", " \"I live in San Francisco. What are the Types of Memory?\"\n", ")" ] }, { "cell_type": "markdown", "id": "0513a6e2", "metadata": {}, "source": [ "## Supply a prompt" ] }, { "cell_type": "code", "execution_count": 7, "id": "410d6a64", "metadata": {}, "outputs": [], "source": [ "from langchain import LLMChain\n", "from langchain.prompts import PromptTemplate\n", "\n", "QUERY_PROMPT = PromptTemplate(\n", " input_variables=[\"question\"],\n", " template=\"\"\"You are an assistant tasked with taking a natural languge query from a user\n", " and converting it into a query for a vectorstore. In the process, strip out all \n", " information that is not relevant for the retrieval task and return a new, simplified\n", " question for vectorstore retrieval. The new user query should be in pirate speech.\n", " Here is the user query: {question} \"\"\",\n", ")\n", "llm = ChatOpenAI(temperature=0)\n", "llm_chain = LLMChain(llm=llm, prompt=QUERY_PROMPT)" ] }, { "cell_type": "code", "execution_count": 8, "id": "2dbffdd3", "metadata": {}, "outputs": [], "source": [ "retriever_from_llm_chain = RePhraseQueryRetriever(\n", " retriever=vectorstore.as_retriever(), llm_chain=llm_chain\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "id": "103b4be3", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:langchain.retrievers.re_phraser:Re-phrased question: Ahoy matey! What be Maximum Inner Product Search, ye scurvy dog?\n" ] } ], "source": [ "docs = retriever_from_llm_chain.get_relevant_documents(\n", " \"Hi I'm Lance. What is Maximum Inner Product Search?\"\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.1" } }, "nbformat": 4, "nbformat_minor": 5 }