# Redis This page covers how to use the [Redis](https://redis.com) ecosystem within LangChain. It is broken into two parts: installation and setup, and then references to specific Redis wrappers. ## Installation and Setup - Install the Redis Python SDK with `pip install redis` ## Wrappers ### Cache The Cache wrapper allows for [Redis](https://redis.io) to be used as a remote, low-latency, in-memory cache for LLM prompts and responses. #### Standard Cache The standard cache is the Redis bread & butter of use case in production for both [open source](https://redis.io) and [enterprise](https://redis.com) users globally. To import this cache: ```python from langchain.cache import RedisCache ``` To use this cache with your LLMs: ```python import langchain import redis redis_client = redis.Redis.from_url(...) langchain.llm_cache = RedisCache(redis_client) ``` #### Semantic Cache Semantic caching allows users to retrieve cached prompts based on semantic similarity between the user input and previously cached results. Under the hood it blends Redis as both a cache and a vectorstore. To import this cache: ```python from langchain.cache import RedisSemanticCache ``` To use this cache with your LLMs: ```python import langchain import redis # use any embedding provider... from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings redis_url = "redis://localhost:6379" langchain.llm_cache = RedisSemanticCache( embedding=FakeEmbeddings(), redis_url=redis_url ) ``` ### VectorStore The vectorstore wrapper turns Redis into a low-latency [vector database](https://redis.com/solutions/use-cases/vector-database/) for semantic search or LLM content retrieval. To import this vectorstore: ```python from langchain.vectorstores import Redis ``` For a more detailed walkthrough of the Redis vectorstore wrapper, see [this notebook](/docs/modules/data_connection/vectorstores/integrations/redis.html). ### Retriever The Redis vector store retriever wrapper generalizes the vectorstore class to perform low-latency document retrieval. To create the retriever, simply call `.as_retriever()` on the base vectorstore class. ### Memory Redis can be used to persist LLM conversations. #### Vector Store Retriever Memory For a more detailed walkthrough of the `VectorStoreRetrieverMemory` wrapper, see [this notebook](/docs/modules/memory/integrations/vectorstore_retriever_memory.html). #### Chat Message History Memory For a detailed example of Redis to cache conversation message history, see [this notebook](/docs/modules/memory/integrations/redis_chat_message_history.html).